Skip to main content
Log in

Orbits in the problem of two fixed centers on the sphere

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

A trajectory isomorphism between the two Newtonian fixed center problem in the sphere and two associated planar two fixed center problems is constructed by performing two simultaneous gnomonic projections in S 2. This isomorphism converts the original quadratures into elliptic integrals and allows the bifurcation diagram of the spherical problem to be analyzed in terms of the corresponding ones of the planar systems. The dynamics along the orbits in the different regimes for the problem in S 2 is expressed in terms of Jacobi elliptic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albouy, A., The Underlying Geometry of the Fixed Centers Problems, in Topological Methods, Variational Methods and Their Applications (Taiyuan, 2002), H. Brezis, K. C. Chang, S. J. Li, P. Rabinowitz (Eds.), River Edge, N.J.: World Sci., 2003, pp. 11–21.

  2. Albouy, A. and Stuchi, T. J., Generalizing the Classical Fixed-Centres Problem in a Non-Hamiltonian Way, J. Phys. A, 2004, vol. 37, no. 39, pp. 9109–9123.

    Article  MathSciNet  MATH  Google Scholar 

  3. Albouy, A., Projective Dynamics and Classical Gravitation, Regul. Chaotic Dyn., 2008, vol. 13, no. 6, pp. 525–542.

    Article  MathSciNet  MATH  Google Scholar 

  4. Albouy, A., There is a Projective Dynamics, Eur. Math. Soc. Newsl., 2013, no. 89, pp. 37–43.

    MathSciNet  MATH  Google Scholar 

  5. Albouy, A., Projective Dynamics and First Integrals, Regul. Chaotic Dyn., 2015, vol. 20, no. 3, pp. 247–276.

    Article  MathSciNet  MATH  Google Scholar 

  6. Alekseev, V.M., A Generalized Three-Dimensional Problem of Two Fixed Centers of Gravitation: A Classification of Motions, Tr. Inst. Teoret. Astronom., 1965, vol. 10, no. 4, pp. 241–271 (Russian).

    MathSciNet  Google Scholar 

  7. Alonso Izquierdo, A., González León, M.A., and Mateos Guilarte, J., Kinks in a Nonlinear Massive Sigma Model, Phys. Rev. Lett., 2008, vol. 101, no. 13, 131602, 4 pp.

    Article  Google Scholar 

  8. Alonso Izquierdo, A., González León, M.A., Mateos Guilarte, J., and de la Torre Mayado, M., On Domain Walls in a Ginzburg–Landau Non-Linear S2-Sigma Model, J. High Energy Phys., 2010, vol. 2010, no. 8, Art. 111, 29 pp.

    Article  MATH  Google Scholar 

  9. Appell, P., De l’homographie en mécanique, Amer. J. Math., 1890, vol. 12, no. 1, pp. 103–114.

    Article  MathSciNet  MATH  Google Scholar 

  10. Appell, P., Sur les lois de forces centrales faisant décrire à leur point d’application une conique quelles que soient les conditions initiales, Amer. J. Math., 1891, vol. 13, no. 2, pp. 153–158.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bolsinov, A.V. and Fomenko, A.T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Boca Raton, Fla.: CRC, 2004.

    MATH  Google Scholar 

  12. Borisov, A.V. and Mamaev, I. S., Generalized Problem of Two and Four Newtonian Centers, Celestial Mech. Dynam. Astronom., 2005, vol. 92, no. 4, pp. 371–380.

    Article  MathSciNet  MATH  Google Scholar 

  13. Borisov, A.V. and Mamaev, I. S., Relations between Integrable Systems in Plane and Curved Spaces, Celestial Mech. Dynam. Astronom., 2007, vol. 99, no. 4, pp. 253–260.

    Article  MathSciNet  MATH  Google Scholar 

  14. Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., The Spatial Problem of 2 Bodies on a Sphere: Reduction and Stochasticity, Regul. Chaotic Dyn., 2016, vol. 21, no. 5, pp. 556–580.

    Article  MathSciNet  MATH  Google Scholar 

  15. Byrd, P. F. and Friedman, M.D., Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., rev., Grundlehren Math. Wiss., vol. 67, Heidelberg: Springer, 1971.

    Book  MATH  Google Scholar 

  16. Demin, V.G., Orbits in the Problem of Two Fixed Centers, Soviet Astronom. AJ, 1960, vol. 4, pp. 1005–1012; see also: Astronom. Zh., 1960, vol. 37, no. 6, pp. 1068–1075.

    MathSciNet  MATH  Google Scholar 

  17. Euler, L., De motu corporis ad duo centra virium fixa attracti, Novi Commentarii Academiæ Scientiarum Petropolitanæ, 1766, vol. 10, pp. 207–242, 1767, vol. 11, pp. 152–184; see also: Opera Omnia, Ser. 2: Vol. 6, pp. 209–246, pp. 247–273.

    Google Scholar 

  18. Euler, L., Probleme. Un corps étant attiré en raison réciproque quarrée des distances vers deux points fixes donnés, trouver les cas où la courbe décrite par ce corps sera algébrique, Mémoires de l’Académie de Berlin, 1767, vol. 16, pp. 228–249; see also: Opera Omnia, Ser. 2: Vol. 6, pp. 274–293.

    Google Scholar 

  19. Higgs, P.W., Dynamical Symmetries in a Spherical Geometry: 1, J. Phys. A, 1979, vol. 12, no. 3, pp. 309–323.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jacobi, C.G. J., Vorlesungen über Dynamik, 2nd ed., Berlin: Reimer, 1884.

    MATH  Google Scholar 

  21. Killing, H. W., Die Mechanik in den nicht-euklidischen Raumformen, J. Reine Angew. Math., 1885, vol. 98, no. 1, pp. 1–48.

    MathSciNet  MATH  Google Scholar 

  22. Kozlov, V.V. and Harin, A.O., Kepler’s Problem in Constant Curvature Spaces, Celestial Mech. Dynam. Astronom., 1992, vol. 54, no. 4, pp. 393–399.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lagrange, J. L., Recherches sur le mouvement d’un corps qui est attiré vers deux centres fixes, in Oeuvres complètes: Vol. 2, Paris: Gauthier-Villars, 1868, pp. 67–121.

    Google Scholar 

  24. Legendre, A.M., Traité des fonctions elliptiques et des intégrales Eulériennes: Vol. 1, Paris: Huzard-Courcier, 1825.

    Google Scholar 

  25. Liouville, J., Sur quelques cas particuliers où les équations du mouvement d’un point matériel peuvent s’intégrer: 1, J. Math. Pures Appl. (1), 1846, vol. 11, pp. 345–378.

    Google Scholar 

  26. Mamaev, I. S., Two Integrable Systems on a Two-Dimensional Sphere, Dokl. Phys., 2003, vol. 48, no. 3, pp. 156–158; see also: Dokl. Akad. Nauk, 2003, vol. 389, no. 3, pp. 338–340.

    Article  MathSciNet  Google Scholar 

  27. Neumann, C., De problemate quodam mechanica, quod ad primam integralium ultra-ellipticorum classem revocatur, J. Reine Angew. Math., 1859, vol. 56, pp. 54–66.

    Google Scholar 

  28. Ó Mathúna, D., Integrable Systems in Celestial Mechanics, Prog. Math. Phys., vol. 51, Boston, Mass.: Birkhäuser, 2008.

    MATH  Google Scholar 

  29. Seri, M., The Problem of Two Fixed Centers: Bifurcation Diagram for Positive Energies, J. Math. Phys., 2015, vol. 56, no. 1, 012902, 14 pp.

    Article  MathSciNet  MATH  Google Scholar 

  30. Serret, P., Théorie nouvelle géométrique et mécanique des lignes à double courbure, Paris: Mallet-Bachelier, 1860.

    Google Scholar 

  31. Vozmischeva, T. G., Classification of Motions for Generalization of the Two-Center Problem on a Sphere, Celestial Mech. Dynam. Astronom., 2000, vol. 77, no. 1, pp. 37–48.

    Article  MathSciNet  MATH  Google Scholar 

  32. Vozmishcheva, T.G. and Oshemkov, A.A., Topological Analysis of the Two-Center Problem on a Two-Dimensional Sphere, Sb. Math., 2002, vol. 193, nos. 7–8, pp. 1103–1138; see also: Mat. Sb., 2002, vol. 193, no. 8, pp. 3–38.

    Article  MathSciNet  MATH  Google Scholar 

  33. Vozmischeva, T.G., Integrable Problems of Celestial Mechanics in Spaces of Constant Curvature, Astrophysics and Space Science Library, vol. 295, Dordrecht: Springer, 2003.

    Book  MATH  Google Scholar 

  34. Waalkens, H., Dullin, H.R., and Richter, P.H., The Problem of Two Fixed Centers: Bifurcations, Actions, Monodromy, Phys. D, 2004, vol. 196, nos. 3–4, pp. 265–310.

    Article  MathSciNet  MATH  Google Scholar 

  35. Whittaker, E.T. and Watson, G.N., A Course of Modern Analysis, Cambridge: Cambridge Univ. Press, 1996.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Gonzalez Leon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez Leon, M.A., Guilarte, J.M. & de la Torre Mayado, M. Orbits in the problem of two fixed centers on the sphere. Regul. Chaot. Dyn. 22, 520–542 (2017). https://doi.org/10.1134/S1560354717050045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354717050045

Keywords

MSC2010 numbers

Navigation