Skip to main content
Log in

Towards a Realistic Monte Carlo Simulation of the MPD Detector at NICA

  • METHODS OF PHYSICAL EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

During the preparation of the physics program of any experiment it is very important to perform a realistic simulation of the detector, i.e. to describe real detector effects with as many details as possible. In this paper the current status of such a simulation of the MPD TPC (Time Projection Chamber) is demonstrated, including description of relevant processes. Data reconstruction approaches are also presented along with the main results on detector performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. V. D. Kekelidze, R. Lednicky, V. A. Matveev, I. N. Meshkov, A. S. Sorin, and G. V. Trubnikov, “Three stages of the NICA accelerator complex,” Eur. Phys. J. A 52, 211 (2016).

    Article  ADS  Google Scholar 

  2. V. Golovatyuk, V. Kekelidze, V. Kolesnikov, O. Rogachevsky, and A. Sorin, “The multi-purpose detector (MPD) of the collider experiment,” Eur. Phys. J. A 52, 212 (2016).

    Article  ADS  Google Scholar 

  3. M. Ilieva, V. Kolesnikov, Yu. Murin, D. Suvarieva, V. Vasendina, A. Zinchenko, E. Litvinenko, and K. Gudima, “Evaluation of the MPD detector capabilities for the study of the strangeness production at the NICA collider,” Phys. Part. Nucl. Lett. 12, 100 (2015).

    Article  Google Scholar 

  4. V. Vasendina, V. Jejer, V. Kolesnikov, S. Lobastov, G. Musulmanbekov, I. Tyapkin, and A. Zinchenko, “Study of the MPD detector capabilities for electron-positron pair measurements at the NICA collider,” Phys. Part. Nucl. Lett. 10, 769 (2013).

    Article  Google Scholar 

  5. M. Ilieva, V. Kolesnikov, D. Suvarieva, V. Vasendina, and A. Zinchenko, “Reconstruction of multistrange hyperons with the MPD detector at the NICA collider: a Monte Carlo feasibility study,” Phys. Part. Nucl. Lett. 12, 618 (2015).

    Article  Google Scholar 

  6. http://urqmd.org/.

  7. V. D. Toneev and K. K. Gudima, “Particle emission in light and heavy ion reactions,” Nucl. Phys. A 400, 173 (1983).

    Article  ADS  Google Scholar 

  8. N. S. Amelin, K. K. Gudima, and V. D. Toneev, “Ultrarelativistic nucleus-nucleus collisions within a dynamical model of independent quark-gluon strings,” Sov. J. Nucl. Phys. 51, 1093 (1990).

    Google Scholar 

  9. N. S. Amelin, L. V. Bravina, L. P. Csernai, V. D. Toneev, K. K. Gudima, and S. Y. Sivoklokov, “Strangeness production in proton and heavy ion collisions at 200-A-GeV,” Phys. Rev. C 47, 2299 (1993).

    Article  ADS  Google Scholar 

  10. L. A. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emission tomography,” IEEE Trans. Med. Imaging 1, 113 (1982).

    Article  Google Scholar 

  11. L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745 (1974).

    Article  ADS  Google Scholar 

  12. W. H. Richardson, “Bayesian-based iterative method of image restoration,” J. Opt. Soc. Am. 62, 55 (1972).

    Article  ADS  Google Scholar 

  13. G. D. Agostini, “A multidimensional unfolding method based on Bayes’ theorem,” Nucl. Instrum. Methods Phys. Res., Sect. A 362, 487 (1995).

    Google Scholar 

  14. E. A. Kolganova, G. A. Ososkov, and E. L. Kosarev, “Superresolution algorithms for data analysis of discrete detectors in nuclear physics,” Nucl. Instrum. Methods Phys. Res., Sect. A 443, 464 (2000).

    Google Scholar 

  15. A. Zinchenko et al. (ALICE Collab.), “A new approach to cluster finding and hit reconstruction in cathode pad chambers and its development for the forward muon spectrometer of ALICE,” Nucl. Instrum. Methods Phys. Res., Sect. A 502, 778 (2003).

    Google Scholar 

  16. M. Anderson et al. (STAR Collab.), “The star time projection chamber: a unique tool for studying high multiplicity events at RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 499, 659 (2003).

    Google Scholar 

  17. R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl. Instrum. Methods Phys. Res. 262, 444 (1987).

    Article  ADS  Google Scholar 

  18. L. Landau, “On the energy loss of fast particles by ionization,” J. Phys. USSR 8, 201 (1944).

    Google Scholar 

  19. MPD TOF Technical Design Report. http://mpd.jinr.ru/ wp-content/uploads/2017/07/TDR_TOF_MPD_v2_ 20-17_07_2017.pdf.

  20. R. Luchsinger and Ch. Grab, “Vertex reconstruction by means of the method of Kalman filter,” Comput. Phys. Commun. 76, 263 (1993).

    Article  ADS  Google Scholar 

Download references

9. ACKNOWLEDGMENTS

Authors would like to thank S. Merts and P. Batyuk for their work on earlier versions of the TPC digitization software package and S. Lobastov for the implementation of the TPC-TOF matching procedure. The investigation has been performed at the Laboratory of High Energy Physics, JINR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zinchenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, V., Mudrokh, A., Vasendina, V. et al. Towards a Realistic Monte Carlo Simulation of the MPD Detector at NICA. Phys. Part. Nuclei Lett. 16, 6–15 (2019). https://doi.org/10.1134/S1547477119010084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477119010084

Navigation