Skip to main content
Log in

Superembedding approach to Dp-branes, M-branes and multiple D(0)-brane systems

  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We review the superembedding approach to M-branes and Dp-branes, in its form based on the universal (D and p-independent) superembedding equation, and its recent application in searching for supersymmetric and Lorentz covariant description of multiple Dp-brane systems. In particular, we present the structure of the multiple D0-brane equation as follows from our superembedding description and show that it describes the dielectric effect firstly noticed by Emparan and then by Myers. We also discuss briefly the relation with the boundary fermion approach by Howe, Lindström and Wulff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bergshoeff, E. Sezgin, and P. K. Townsend, “Supermembrane and Eleven-Dimansional Supergravity,” Phys. Lett. B 189, 75–78 (1987); Ann. Phys. (N.Y.) 185, 330 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Achu-carro, J. M. Evans, P. K. Townsend, and D. L. Wiltshire, “Super-P-Branes,” Phys. Lett. B 198, 441 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  3. P. S. Howe and E. Sezgin, “Superbranes,” Phys. Lett. B 390, 133 (1997), hep-th/9607227.

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Cederwall, A. von Gussich, B. E. W. Nilsson, and A. Westerberg, “The Dirichlet Super-Three-Branes in Ten-Dimensional Type IIB Supergravity,” Nucl. Phys. B 490, 163–178 (1997), hep-th/9610148. M. Aganagic, C. Popescu, and J. H. Schwarz, “D-Brane Actions with Local Kappa Symmetry,” Phys. Lett. B 393, 311–315 (1997), hep-th/9610249.

    Article  ADS  MATH  Google Scholar 

  5. P. S. Howe and E. Sezgin, “D = 11, P = 5,” Phys. Lett. B 394, 62 (1997), hep-th/9611008.

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Cederwall, A. Von Gussich, B. E. W. Nilsson, P. Sundell, and A. Westerberg, “The Dirichlet Super-P-Branes in Ten-Dimensional Type IIA and IIB Supergravity,” Nucl. Phys. B 490, 179–201 (1997), hep-th/9611159; M. Aganagic, C. Popescu, and J. H. Schwarz, “Gauge-Invariant and Gauge-Fixed D-Brane Actions,” Nucl. Phys. B 490, 202 (1997), hep-th/9612080.

    Article  ADS  MATH  Google Scholar 

  7. E. Bergshoeff and P. K. Townsend, “Super-D -Branes,” Nucl. Phys. B 490, 145–162 (1997), hep-th/9611173.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin, and M. Tonin, “Covariant Action for the Super-Five-Brane of M-Theory,” Phys. Rev. Lett. 78, 4332 (1997), hep-th/9701149.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. M. Aganagic, J. Park, C. Popescu, and J. H. Schwarz, “World-Volume Action of the M-Theory Five-Brane,” Nucl. Phys. B 496, 191–214 (1997), hep-th/9701166.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. C. M. Hull and P. K. Townsend, “Unity of Superstring Dualities,” Nucl. Phys. B 438, 109–137 (1995) hep-th/9410167; E. Witten, “String Theory Dynamics in Various Dimensions,” Nucl. Phys. B 443, 85–126 (1995), hep-th/9503124.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. H. Schwarz, “Second Superstring Revolution,” Nucl. Phys. Proc. Suppl. B 55, 1–32 (1997), hep-th/9607067; P. K. Townsend, “Four Lectures on M-Theory,” in The ICTP Series in Theoretical Physics, Vol. 13 (World Sci., Singapore, 1997), pp. 385–438, hep-th/9612121.

    Article  ADS  Google Scholar 

  12. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231–252 (1998), hep-th/9711200; S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105–114 (1998), hep-th/9802109; E. Witten, Adv. Theor. Math. Phys. 2, 253–291 (1998), hep-th/9802150.

    MathSciNet  ADS  MATH  Google Scholar 

  13. O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large N Field Theories, String Theory and Gravity,” Phys. Rep. 323, 183 (2000), arXiv:hep-th/9905111; L. F. Alday and R. Roiban, “Scattering Amplitudes, Wilson Loops and the String/Gauge Theory Correspondence,” Phys. Rep. 468, 153–211 (2008), arXiv:0807.1889 [hep-th]; S. S. Gubser, “Using String Theory to Study the Quark-Gluon Plasma: Progress and Perils,” Nucl. Phys. A 830, 657 (2009), arXiv:0907.4808 [hep-th] and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  14. M. J. Duff, R. R. Khuri, and J. X. Lu, “String Solitons,” Phys. Rep. 259, 213–326 (1995); K. S. Stelle, “BPS Branes in Supergravity,” in Proceedings of the ICTP Summer School, 2 Jun.–11 Jul. 1997, Trieste, Italy (World Sci., Singapore, 1998), pp. 29–127, hep-th/9803116 and references therein.

    Article  MathSciNet  ADS  Google Scholar 

  15. I. A. Bandos, D. P. Sorokin, M. Tonin, P. Pasti, and D. V. Volkov, “Superstrings and Supermembranes in the Doubly Supersymmetric Geometrical Approach,” Nucl. Phys. B 446, 79–118 (1995), hep-th/9501113.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. I. A. Bandos, D. P. Sorokin, and M. Tonin, “Generalized Action Principle and Superfield Equations of Motion for D = 10 Dp -Branes,” Nucl. Phys. B 497, 275–296 (1997), hep-th/9701127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. C. S. Chu, P. S. Howe, and E. Sezgin, “Strings and D-Branes with Boundaries,” Phys. Lett. B 428, 59–67 (1998), hep-th/9801202; C. S. Chu, P. S. Howe, E. Sezgin, and P. C. West, “Open Superbranes,” Phys. Lett. B 429, 273–280 (1998), hep-th/9803041.

    Article  MathSciNet  ADS  Google Scholar 

  18. V. Akulov, I. A. Bandos, W. Kummer, and V. Zima, D = 10 Dirichlet Super-9-Brane,” Nucl. Phys. B 527, 61 (1998), hep-th/9802032.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. D. P. Sorokin, “Superbranes and Superembeddings,” Phys. Rep. 329, 1 (2000), hep-th/9906142.

    Article  MathSciNet  Google Scholar 

  20. I. A. Bandos, “Superembedding Approach and S-Duality: A Unified Description of Superstring and Super-D1-Brane,” Nucl. Phys. B 599, 197 (2001), arXiv:hep-th/0008249.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. I. A. Bandos, “On Superembedding Approach to Type IIB 7-Branes,” JHEP 0904, 085 (2009), arXiv:0812.2889 [hep-th].

    Article  MathSciNet  ADS  Google Scholar 

  22. I. A. Bandos, “On Superembedding Approach to Multiple D-Brane System. D0 Story,” Phys. Lett. B 680, 267 (2009), arXiv:0907.4681 [hep-th].

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Emparan, “Born-Infeld Strings Tunneling to D-Branes,” Phys. Lett. B 423, 71 (1998), arXiv:hep-th/9711106.

    Article  MathSciNet  ADS  Google Scholar 

  24. R. C. Myers, “Dielectric-Branes,” JHEP 9912, 022 (1999), hep-th/9910053.

    Article  ADS  Google Scholar 

  25. P. S. Howe, U. Lindstrom, and L. Wulff, “Superstrings with Boundary Fermions,” JHEP 0508, 041 (2005), hep-th/0505067; P. S. Howe, U. Lindstrom, and L. Wulff, “On the Covariance of the Dirac-Born-Infeld-Myers Action,” JHEP 0702, 070 (2007), hep-th/0607156.

  26. P. S. Howe, U. Lindstrom, and L. Wulff, “Kappa-Symmetry for Coincident D-Branes,” JHEP 0709, 010 (2007), arXiv:0706.2494 [hep-th].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Sagnotti, “Open Strings and Their Symmetry Groups,” in Proceedings of the NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), Cargese, France, Jul. 16–30, 1987, pp. 521–528, arXiv:hep-th/0208020.

  28. P. Horava, “Strings on World Sheet Orbifolds,” Nucl. Phys. B 327, 461 (1989); “Background Duality of Open String Models,” Phys. Lett. B 231, 251 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Dai, R. G. Leigh, and J. Polchinski, “New Connections between String Theories,” Mod. Phys. Lett. A 4, 2073 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  30. R. G. Leigh, “Dirac-Born-Infeld Action from Dirichlet Sigma Model,” Mod. Phys. Lett. A 4, 2767 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995), hep-th/9510017.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. E. Witten, “Bound States of Strings and P-Branes,” Nucl. Phys. B 460, 335 (1996), hep-th/9510135.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. U. H. Danielsson, G. Ferretti, and B. Sundborg, “D-Particle Dynamics and Bound States,” Int. J. Mod. Phys. A 11, 5463 (1996), hep-th/9603081; D. N. Kabat and P. Pouliot, “A Comment on Zero-Brane Quantum Mechanics,” Phys. Rev. Lett. 77, 1004–1007 (1996), hep-th/9603127. M. R. Douglas, D. N. Kabat, P. Pouliot, and S. H. Shenker, “D-Branes and Short Distances in String Theory,” Nucl. Phys. B 485, 85–127 (1997), hep-th/9608024.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, “M Theory as a Matrix Model: A Conjecture,” Phys. Rev. D 55, 5112–5128 (1997), hep-th/9610043.

    Article  MathSciNet  ADS  Google Scholar 

  35. P. K. Townsend, “D-Branes from M-Branes,” Phys. Lett. B 373, 68–75 (1996), hep-th/9512062.

    Article  MathSciNet  ADS  Google Scholar 

  36. M. B. Green, J. A. Harvey, and G. W. Moore, “I-Brane Inflow and Anomalous Couplings on D-Branes,” Class. Quant. Grav. 14, 47 (1997), arXiv:hep-th/9605033.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. A. A. Tseytlin, “Born-Infeld Action, Supersymmetry and String Theory,” in The Many Faces of the Superworld, Yuri Golfand Memorial Volume, Ed. by M. A. Shifman (World Sci., Singapore, 2000), pp. 417–452, hep-th/9908105.

    Google Scholar 

  38. M. B. Green, C. M. Hull, and P. K. Townsend, “D-Brane Wess-Zumino Actions, T-Duality and the Cosmological Constant,” Phys. Lett. B 382, 65 (1996), hep-th/9604119.

    Article  MathSciNet  ADS  Google Scholar 

  39. A. A. Tseytlin, “On Non-Abelian Generalisation of the Born-Infeld Action in String Theory,” Nucl. Phys. B 501, 41–52 (1997), hep-th/9701125.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. D. P. Sorokin, “Coincident (super)-dp-Branes of Codimension One,” JHEP 08, 022 (2001), hep-th/0106212. D. Sorokin, “Space-Time Symmetries and Supersymmetry of Coincident D-Branes,” Fortsch. Phys. 50, 973 (2002); S. Panda and D. Sorokin, “Supersymmetric and Kappa-Invariant Coincident D0-Branes,” JHEP 0302, 055 (2003), hep-th/0301065.

  41. J. M. Drummond, P. S. Howe, and U. Lindstrom, “Kappa-Symmetric Non-Abelian Born-Infeld Actions in Three Dimensions,” Class. Quant. Grav. 19, 6477 (2002), hep-th/0206148.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. I. A. Bandos and P. K. Townsend, “SDiff Gauge Theory and the M2 Condensate,” JHEP 0902, 013 (2009), arXiv:0808.1583 [hep-th].

  43. N. Marcus and A. Sagnotti, “Group Theory from Quarks at the Ends of Strings,” Phys. Lett. B 188, 58 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  44. E. Cremmer and S. Ferrara, “Formulation of Eleven-Dimensional Supergravity in Superspace,” Phys. Lett. B 91, 61 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  45. L. Brink and P. S. Howe, “Eleven-Dimensional Supergravity on the Mass-Shell in Superspace,” Phys. Lett. B 91, 384 (1980).

    Article  ADS  Google Scholar 

  46. P. S. Howe and P. C. West, “The Complete N =2, D = 10 Supergravity,” Nucl. Phys. B 238, 181–220 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Bellucci, S. J. J. Gates, B. Radak, and S. Vashakidze, “Improved Supergeometries for Type-II Green-Schwarz Non-Linear Sigma-Model,” Mod. Phys. Lett. A 4, 1985–1998 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  48. D. P. Sorokin, V. I. Tkach, and D. V. Volkov, “Superparticles, Twistors and Siegel Symmetry,” Mod. Phys. Lett. A 4, 901–908 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  49. F. Delduc, A. Galperin, P. S. Howe, and E. Sokatchev, “A Twistor Formulation of the Heterotic D= 10 Superstring with Manifest (8,0) World Sheet Supersymmetry,” Phys. Rev. D 47, 578 (1993), hep-th/9207050; See [19] for More References on STV Approach to Superparticles and D < 10 Superstrings.

    Article  MathSciNet  ADS  Google Scholar 

  50. D. V. Volkov and A. A. Zheltukhin, “Extension of the Pernose Representation and Its Use to Describe Supersymmetric Models,” JETP Lett. 48, 63 (1988); “On the Equivalence of the Lagrangians of Massless Dirac and Supersymmetrical Particles,” Lett. Math. Phys. 17, 141 (1989); “Lagrangians for Massless Particles and Strings with Local and Global Supersymmetry,” Nucl. Phys. B 335, 723 (1990).

    MathSciNet  ADS  Google Scholar 

  51. D. P. Sorokin, V. I. Tkach, D. V. Volkov, and A. A. Zheltukhin, “From the Superparticle Siegel Symmetry to the Spinning Particle Proper Time Supersymmetry,” Phys. Lett. B 216, 302 (1989).

    Article  ADS  Google Scholar 

  52. D. V. Uvarov, “On Covariant Kappa-Symmetry Fixing and the Relation between the NSR String and the Type II GS Superstring,” Phys. Lett. B 493, 421–429 (2000), arXiv:hep-th/0006185; “New Superembeddings for Type II Superstrings,” JHEP 0207, 008 (2002), arXiv:hep-th/0112155.

    Article  MathSciNet  ADS  Google Scholar 

  53. E. Sokatchev, “Light Cone Harmonic Superspace and Its Applications,” Phys. Lett. B 169, 209–214 (1986); “Harmonic Superparticle,” Class. Quant. Grav. 4, 237–246 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  54. I. A. Bandos, “A Superparticle in Lorentz-Harmonic Superspace,” Sov. J. Nucl. Phys. 51, 906–914 (1990).

    MathSciNet  Google Scholar 

  55. A. S. Galperin, P. S. Howe, and K. S. Stelle, “The Superparticle and the Lorentz Group,” Nucl. Phys. B 368, 248–280 (1992), hep-th/9201020; F. Delduc, A. Galperin, and E. Sokatchev, “Lorentz Harmonic (Super)Fields and (Super)Particles,” Nucl. Phys. B 368, 143–171 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  56. I. A. Bandos and A. A. Zheltukhin, “Spinor Cartan Moving N Hedron, Lorentz Harmonic Formulations of Superstrings, and Kappa Symmetry,” JETP Lett. 54, 421–424 (1991); I. A. Bandos and A. A. Zheltukhin, “Green-Schwarz Superstrings in Spinor Moving Frame Formalism,” Phys. Lett. B 288, 77–84 (1992); “Generalization of Newman-Penrose Dyads in Connection with the Action Integral for Supermembranes in an Eleven-Dimensional Space,” JETP Lett. 55, 81 (1992); “D = 10 Superstring: Lagrangian and Hamiltonian Mechanics in Twistor-Like Lorentz Harmonic Formulation,” Phys. Part. Nucl. 25, 453–477 (1994); “Eleven-Dimensional Supermembrane in a Spinor Moving Repere Formalism,” Int. J. Mod. Phys. A 8, 1081 (1993); “N = 1 Super-P-Branes in Twistor — Like Lorentz Harmonic Formulation,” Class. Quant. Grav. 12, 609 (1995), hep-th/9405113.

    MathSciNet  ADS  Google Scholar 

  57. I. Bandos and D. Sorokin, “Aspects of D-Brane Dynamics in Supergravity Backgrounds with Fluxes, Kappa-Symmetry and Equations of Motion. IIB Story,” Nucl. Phys. B 759, 399 (2006), hep-th/0607163.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. I. A. Bandos, “Superembedding Approach to Superstring in AdS(5)xS*5 Superspace,” arXiv:0812.0257 [hep-th].

  59. P. S. Howe and E. Sezgin, “The Supermembrane Revisited,” Class. Quant. Grav. 22, 2167–2200 (2005), arXiv:hep-th/0412245.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. P. S. Howe, E. Sezgin, and P. C. West, Phys. Lett. B 399, 49–59 (1997), hep-th/9702008; Phys. Lett. B 400, 255–259 (1997), hep-th/9702111; I. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. Sorokin, and M. Tonin, Phys. Lett. B 408, 135–141 (1997), hep-th/9703127.

    Article  MathSciNet  ADS  Google Scholar 

  61. P. S. Howe, E. Sezgin, and P. C. West, “Covariant Field Equations of the M-Theory Five-Brane,” Phys. Lett. B 399, 49 (1997), arXiv:hep-th/9702008; P. S. Howe, E. Sezgin, and P. C. West, “The Six-Dimensional Self-Dual Tensor,” Phys. Lett. B 400, 255 (1997), arXiv:hep-th/9702111.

    Article  MathSciNet  ADS  Google Scholar 

  62. I. A. Bandos, K. Lechner, A. Nurmagambetov, P. Pasti, D. P. Sorokin, and M. Tonin, “On the Equivalence of Different Formulations of the M Theory Five-Brane,” Phys. Lett. B 408, 135 (1997), arXiv:hep-th/9703127.

    Article  MathSciNet  ADS  Google Scholar 

  63. M. Cederwall, B. E. W. Nilsson, and D. Tsimpis, “D = 10 Super-Yang-Mills at O(alpha**2),” JHEP 0107, 042 (2001), arXiv:hep-th/0104236.

    Article  MathSciNet  ADS  Google Scholar 

  64. M. Movshev and A. Schwarz, “Supersymmetric Deformations of Maximally Supersymmetric Gauge Theories. I,” arXiv:0910.0620 [hep-th].

  65. M. Cederwall, B. E. W. Nilsson, and D. Tsimpis, “Spinorial Cohomology and Maximally Supersymmetric Theories,” JHEP 0202, 009 (2002), arXiv:hep-th/0110069; M. Cederwall, B. E. W. Nilsson, and D. Tsimpis, “Spinorial Cohomology of Abelian D = 10 Super-Yang-Mills at O(alpha’**3),” JHEP 0211, 023 (2002), arXiv:hep-th/0205165; M. Cederwall, U. Gran, B. E. W. Nilsson, and D. Tsimpis, “Supersymmetric Corrections to Eleven-Dimensional Supergravity,” JHEP 0505, 052 (2005), arXiv:hep-th/0409107.

    Article  MathSciNet  ADS  Google Scholar 

  66. E. A. Bergshoeff, A. Bilal, M. De Roo, and A. Sevrin, “Supersymmetric Non-Abelian Born-Infeld Revisited,” JHEP 0107, 029 (2001), arXiv:hep-th/0105274.

    Article  ADS  Google Scholar 

  67. T. Kugo and P. K. Townsend, “Supersymmetry and the Division Algebras,” Nucl. Phys. B 221, 357–380 (1983); P. S. Howe, G. Sierra, and P. K. Townsend, “Supersymmetry in Six-Dimensions,” Nucl. Phys. B 221, 331–348 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  68. E. Witten, “Five-Brane Effective Action in M-Theory,” J. Geom. Phys. 22, 103 (1997), arXiv:hep-th/9610234] and references therein.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. E. Bergshoeff, J. Hartong, and D. Sorokin, “Q7-Branes and Their Coupling to IIB Supergravity,” JHEP 0712, 079 (2007), arXiv:0708.2287 [hep-th].

    Article  MathSciNet  ADS  Google Scholar 

  70. J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry of Multiple M2-Branes,” Phys. Rev. D 77, 065008 (2008), arXiv:0711.0955 [hep-th]; “Comments on Multiple M2-Branes,” JHEP 0802, 105 (2008), arXiv:0712.3738 [hep-th]; A. Gustavsson, “Algebraic Structures on Parallel M2-Branes,” arXiv:0709.1260 [hep-th]; “Selfdual Strings and Loop Space Nahm Equations,” JHEP 0804, 083 (2008), arXiv:0802.3456 [hep-th].

  71. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N = 6 Superconformal Chern-Simons-Matter Theories, M2-Branes and Their Gravity Duals,” arXiv:0806.1218 [hep-th]; O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-Branes,” JHEP 0811, 043 (2008), arXiv:0807.4924 [hep-th].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Bandos.

Additional information

Also at Institute for Theoretical Physics, NSC Kharkov Institute of Physics and Technology, UA 61108, Kharkov, Ukraine.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandos, I.A. Superembedding approach to Dp-branes, M-branes and multiple D(0)-brane systems. Phys. Part. Nuclei Lett. 8, 149–172 (2011). https://doi.org/10.1134/S1547477111030046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477111030046

Keywords

Navigation