Skip to main content
Log in

Spark Plasma Sintering of Special-Purpose Functional Ceramics Based on UO2, ZrO2, Fe3O4/α-Fe2O3

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The possibilities of creating special-purpose ceramics by the spark plasma sintering (SPS) according to the principle of the low-voltage electro-pulse consolidation of powders under the conditions of an external mechanical load is investigated. Ceramics applicable in the nuclear, medical, and electrotechnical industries are fabricated. A methodological description and special features of the presented technique are provided for the first time in terms of fabricating nuclear ceramics in the form of a pellet product of UO2; composite bioceramics with a theoretical density exceeding 97.6% (based on ZrO2 doped by hydroxyapatite) characterized with controlled (meso-, macro-) porosity and a high compression strength of ~400 MPa; and magnetic ceramics resistant to reverse magnetization based on nanostructured iron oxides (Fe3O4/α-Fe2O3) with a saturation magnetization of 50 emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Tokita, M., Trends in advanced SPS spark plasma sintering systems and technology, J. Soc. Powder Technol., Jpn., 1993, vol. 30, pp. 1149–1178.

    Article  Google Scholar 

  2. Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Räthel, J., and Herrmann, M., Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments, Adv. Eng. Mater., 2014, vol. 16, pp. 830–849.

    Article  Google Scholar 

  3. Papynov, E.K., Portnyagin, A.S., Cherednichenko, A.I., Tkachenko, I.A., Modin, E.B., Maiorov, V.Y., Dran’kov, A.N., Sokol’nitskaya, T.A., Kydralieva, K.A., Zhorobekova, S.Z., and Avramenko, V.A., Uranium sorption on reduced porous iron oxides, Dokl. Phys. Chem., 2016, vol. 468, pp. 67–71.

    Article  Google Scholar 

  4. Zhiganov, A.I., Guzeev, V.V., and Andreev, G.G., Tekhnologiya dioksida urana dlya keramicheskogo yadernogo topliva (The Technology of Uranium Dioxide for Ceramic Nuclear Fuel), Tomsk: STT, 2002.

    Google Scholar 

  5. Carrea, A.J., Sintering of uranium dioxide in an atmosphere of controlled hydrogen content, J. Nucl. Mater., 1963, vol. 8, pp. 275–277.

    Article  Google Scholar 

  6. Ge, L., Subhash, G., Baney, R.H., Tulenko, J.S., and McKenna, E., Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS), J. Nucl. Mater., 2013, vol. 435, pp. 1–9.

    Article  Google Scholar 

  7. Cologna, M., Tyrpekl, V., Ernstberger, M., Stohr, S., and Somers, J., Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS), Ceram. Int., 2016, vol. 42, pp. 6619–6623.

    Article  Google Scholar 

  8. Shornikov, D.P., Burlakova, M.A., Tarasov, B.A., Nikitin, S.N., Yakutkina, T.V., and Yurlova, M.S., The methods for producing and consolidation of uranium nitrides powder by spark-plasma and electropulse sintering, Vektor Nauki Tol’yattinsk. Gos. Univ., 2013, vol. 3, no. 25, pp. 95–98.

    Google Scholar 

  9. Dubok, V.A., Bioceramics—Yesterday, today, tomorrow, Powder Metall. Met. Ceram., 2000, vol. 39, pp. 381–394.

    Article  Google Scholar 

  10. Medkov, M.A., Rudnev, V.S., Grishchenko, D.N., Djuizen, I.V., Lukiyanchuk, I.V., Papynov, E.K., Portnyagin, A.S., and Gridasova, E.A., Nano-sized calcium-phosphate powders and glass-ceramic coatings for medical purposes, inBioglass: Properties, Functions and Applications, New York: Nova Science, 2016, pp. 55–100.

  11. Juhasz, J.A. and Best, S.M., Bioactive ceramics: Processing, structures and properties, J. Mater. Sci., 2012, vol. 47, pp. 610–624.

    Article  Google Scholar 

  12. Fini, M., Giavaresi, G., Torricelli, P., Borsari, V., Giardino, R., Nicolini, A., and Carpi, A., Osteoporosis and biomaterial osteointegration, Biomed. Pharmacother., 2004, vol. 58, pp. 487–493.

    Article  Google Scholar 

  13. Rapacz-Kmita, A., Ślósarczyk, A., and Paszkiewicz, Z., Mechanical properties of HAp–ZrO2 composites, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 1481–1488.

    Article  Google Scholar 

  14. Yoshimura, M., Ohji, T., Sando, M., and Niihara, K., Rapid rate sintering of nano-grained ZrO2-based composites using pulse electric current sintering method, J. Mater. Sci. Lett., 1998, vol. 17, pp. 1389–1391.

    Article  Google Scholar 

  15. Safronova, T.V., Putlyaev, V.I., Ivanov, V.K., Knot’ko, A.V., and Shatalova, T.B., Powders mixtures based on ammonium pyrophosphate and calcium carbonate for preparation of biocompatible porous ceramic in the CaO–P2O5 system, Refract. Ind. Ceram., 2016, vol. 56, pp. 502–509.

    Article  Google Scholar 

  16. Papynov, E.K., Mayorov, V.Y., Portnyagin, A.S., Shichalin, O.O., Kobylyakov, S.P., Kaidalova, T.A., Nepomnyashiy, A.V., Sokol’nitskaya, T.A., Zub, Y.L., and Avramenko, V.A., Application of carbonaceous template for porous structure control of ceramic composites based on synthetic wollastonite obtained via spark plasma sintering, Ceram. Int., 2015, vol. 41, pp. 1171–1176.

    Article  Google Scholar 

  17. Buschow, K.H.J. and de Boer, F.R., Physics of Magnetism and Magnetic Materials, New York: Springer, 2003.

    Book  Google Scholar 

  18. Liu, Y., Sellmyer, D.J., and Shindo, D., Handbook of Advanced Magnetic Materials, New York: Springer, 2006.

    Book  Google Scholar 

  19. Liu, J.P., Fullerton, E., Gutfleisch, O., and Sellmyer, D.J., Nanoscale Magnetic Materials and Applications, New York: Springer, 2009.

    Book  Google Scholar 

  20. Papynov, E.K., Tkachenko, A.I., Portnyagin, A.S., Modin, E.B., and Avramenko, V.A., Fabrication of magnetic ceramic materials based on nanostructured hematite powder by spark plasma sintering, ARPN J. Eng. Appl. Sci., 2016, vol. 11, pp. 5864–5870.

    Google Scholar 

  21. Adnan, J. and O’Reilly, W., The transformation of γ‑Fe2O3 to α-Fe2O3: Thermal activation and the effect of elevated pressure, Phys. Earth Planet. Inter., 1999, vol. 110, pp. 43–50. doi 10.1016/S0031-9201(98)00128-9

    Article  Google Scholar 

  22. Murakami, M., Hirose, K., Ono, S., Tsuchiya, T., Isshiki, M., and Watanuki, T., High pressure and high temperature phase transitions of FeO, Phys. Earth Planet. Inter., 2004, vol. 146, pp. 273–282.

    Article  Google Scholar 

  23. Stöhr, J. and Siegmann, H.C., Magnetism: From Fundamentals to Nanoscale Dynamics, Berlin, Heidelberg: Springer, 2006.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The present research was comprised of a complex of studies performed with the financial support of the Russian Science Foundation, project no. 17-73-20097 (the ceramic nuclear fuel section); a grant of the President of the Russian Federation for young scientists, project no. MK-177.2017.3 (bioactive ceramics section); and the Russian Foundation for Basic Research, project no. 16-33-00986-mol_а (magnetic ceramics section).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Shichalin.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papynov, E.K., Shichalin, O.O., Medkov, M.A. et al. Spark Plasma Sintering of Special-Purpose Functional Ceramics Based on UO2, ZrO2, Fe3O4/α-Fe2O3. Glass Phys Chem 44, 632–640 (2018). https://doi.org/10.1134/S1087659618060159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659618060159

Keywords:

Navigation