Skip to main content
Log in

The thermodynamic aspect of melting and softening of nanoparticles

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The specific features of the energy spectrum of stationary quantum states responsible for the melting and softening of a polyatomic system are investigated. It follows from the first principles of the quantum mechanics and statistical physics that the melting temperature of small nanoparticles can exceed the melting temperature of a macroscopic sample of the same chemical composition. The dependence of the temperature range of the transition of the polyatomic system to a microscopically labile state on the number of atoms is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievskii, R.A., Nanomaterials: Concept and Modern Problems, Ross. Khim. Zh., 2002, vol. 46, no. 5, pp. 50–56.

    CAS  Google Scholar 

  2. Uvarov, N.F. and Boldyrev, V.V., Size Effects in Chemistry of Heterogeneous Systems, Usp. Khim., 2001, vol. 70, no. 4, pp. 307–329 [Russ. Chem. Rev. (Engl. transl.), 2001, vol. 70, no. 4, pp. 265–284].

    Google Scholar 

  3. Eroshenko, Yu.N., Melting of Nanoclusters, Usp. Fiz. Nauk, 2003, vol. 173, no. 12, p. 1387 [Phys.-Usp. (Engl. transl.), 2003, vol. 46, no. 12, pp. 1319–1326].

    Google Scholar 

  4. Shvartsburg, A.A. and Jarrold, M.F., Solid Clusters Above the Bulk Melting Point, Phys. Rev. Lett., 2000, vol. 85, no. 12, pp. 2530–2532.

    Article  CAS  Google Scholar 

  5. Bal’makov, M.D., On the Melting Temperature of Nanoparticles, Fiz. Khim. Stekla, 2008, vol. 34, no. 1, pp. 140–143 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 1, pp. 110–112].

    Google Scholar 

  6. Landau, L.D. and Lifshitz, E.M., Statisticheskaya fizika Moscow: Nauka, 1964. Translated under the title Course of Theoretical Physics, vol. 5: Statistical Physics, Oxford: Butterworth-Heinemann, 1968.

    Google Scholar 

  7. Kitel, Ch., Elementary Statistical Physics, New York: Wiley, 1958. Translated under the title Statisticheskaya termodinamika, Moscow: Nauka, 1977.

    Google Scholar 

  8. Huang, K., Statistical Mechanics, New York: Wiley, 1963. Translated under the title Statisticheskaya mekhanika, Moscow: Mir, 1966.

    Google Scholar 

  9. Blokhintsev, D.I., Osnovy kvantovoi mekhaniki Moscow: Vysshaya Shkola, 1961. Translated under the title Quantum Mechanics, Dordrecht: Reidel, 1964.

    Google Scholar 

  10. Bal’makov, M.D., Microwave Aspect of Melting of Nanoparticles, Vestn. St. Peterb. Univ., Ser. 4: Fiz., Khim., 2007, no. 2, pp. 58–65.

  11. Ziman, J., Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems, Cambridge: Cambridge Univ. Press, 1979. Translated under the title Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Moscow: Mir, 1982.

    Google Scholar 

  12. Bal’makov, M.D., Stekloobraznoe sostoyanie veshchetsva (The Vitreous State of Matter), St. Petersburg: St. Petersburg State University, 1996 [in Russian].

    Google Scholar 

  13. Kuni, F.M., Statisticheskaya fizika i termodinamika (Statistical Physics and Thermodynamics), Moscow: Nauka, 1981 [in Russian].

    Google Scholar 

  14. Bal’makov, M.D., Information Capacity of Condensed Systems, Semicond. Semimetals, 2004, vol. 79, pp. 1–14.

    Google Scholar 

  15. Wright, A.F. and Leadbetter, A.J., The Structure of the β-Cristobalite Phases of SiO2 and AlPO4, Philos. Mag., 1975, vol. 31, no. 6, pp. 1391–1401.

    Article  CAS  Google Scholar 

  16. Ditkin, V.A. and Prudnikov, A.P., Operatsionnoe ischislenie (Operational Calculus), Moscow: Vysshaya Shkola, 1975 [in Russian].

    Google Scholar 

  17. Berdonosov, S.S., Microwave Chemistry, Soros. Obraz. Zh., 2001, vol. 7, no. 1, pp. 32–38.

    Google Scholar 

  18. Berry, R.S. and Smirnov, B.M., Phase Transitions and Adjacent Phenomena in Simple Atomic Systems, Usp. Fiz. Nauk, 2005, vol. 175, no. 4, pp. 367–411 [Phys. Usp. (Engl. transl.), 2005, vol. 48, no. 4, pp. 345–388].

    Article  Google Scholar 

  19. Tver’yanovich, A.S., Kim, D., Borisov, E.N., et al., Lazernye i mikrovolnovye metody polucheniya i modifikatsii khal’kogenidnykh poluprovodnikovykh materialov (Laser and Microwave Methods for Preparing Chalcogenide Semiconductor Materials), St. Petersburg: BKhV, 2006.

    Google Scholar 

  20. Bal’makov, M.D., Algorithmic Approach to the Problem of Control of the Structure of the Nanostate of Matter, Vestn. St. Peterb. Univ., Ser. 4: Fiz., Khim., 2005, no. 2, pp. 51–59.

  21. Kadomtsev, B.B., Dinamika i informatsiya (Dynamics and Information), Moscow: Usp. Fiz. Nauk Publishing, 1997 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Bal’makov.

Additional information

Original Russian Text © M.D. Bal’makov, 2008, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal’makov, M.D. The thermodynamic aspect of melting and softening of nanoparticles. Glass Phys Chem 34, 559–568 (2008). https://doi.org/10.1134/S1087659608050064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659608050064

Keywords

Navigation