Skip to main content
Log in

Altered rocks of the Onguren carbonatite complex in the Western Tansbaikal Region: Geochemistry and composition of accessory minerals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite–ankerite carbonatites of the Onguren dyke–vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite–ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite–phlogopite–riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ва. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % (Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksyuk, A.M., Experimentally established geofluorimeters and the fluorine regime in granite-related fluids, Petrology, 2002, vol. 10, no. 6, pp. 557–569.

    Google Scholar 

  • Armbruster, T., Bonazzi, P., Akasaka, M., et al., Recommended nomenclature of epidote-group minerals, Eur. J. Mineral., 2006, vol. 18, pp. 551–567.

    Article  Google Scholar 

  • Azimov, P.Ya. and Bushmin, S.A., Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800°C and 1–5 kbar, Geochem. Int., 2007, no. 12, pp. 1210–1234.

    Article  Google Scholar 

  • Bardina, N.Yu. and Popov, V.S., Fenites: systematics, conditions of formation and significance for crustal magma formation, Zap. Vseross. Mineral. O-va, 1994, no. 6, pp. 1–17.

    Google Scholar 

  • Le Bas, M.J., Carbonatite magmas, Mineral. Mag., 1981, vol. 44, pp. 133–140.

    Article  Google Scholar 

  • Bailey, D.K., Carbonatite volcanoes and shallow intrusions in Zambia, Carbonatites, Tuttle, O.F. and Gittins, J., Eds., New York: Interscience, 1969, pp. 127–154.

    Google Scholar 

  • Brod, J.A., Gaspar, J.C., de Araújo, D.P., et al., Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral- chemistry systematics, J. Asian Earth Sci., 2001, vol. 19, pp. 265–296.

    Article  Google Scholar 

  • Buhn, B., The role of the volatile phase for REE and Y fractionation in low-silica carbonate magmas: implications from natural carbonatites, namibia, Mineral. Petrol, 2008, vol. 92, pp. 453–470.

    Article  Google Scholar 

  • Doinikova, O.A., Gorshkov, A.I., Belova, L.N., et al., Problems of systematics of phosphates of the rapdophane group, Zap. Vseross. Mineral. O-va, 1993, no. 3, pp. 79–88.

    Google Scholar 

  • Donskaya, T.V., Bibikova, E.V., Mazukabzov, A.M., et al., The Primorsky granitoid complex of Western Cisbaikalia: geochronology and geodynamic typification, Russ. Geol. Geophys. 2003, vol. 44, no. 10. pp. 968–979.

    Google Scholar 

  • Druppel, K., Hoefs, J., and Okrusch, M., Fenitizing processes induced by ferrocarbonatite magmatism at Swartbooisdrif,NW Namibia, J. Petrol., 2005, vol. 46, pp. 377–406.

    Article  Google Scholar 

  • Evolyutsiya yuzhnoi chasti Sibirskogo kratona v dokembrii (Precambrian Evolution of the Southern Siberian Craton) Sklyarov, E.V, Ed., Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2006.

  • Fleisher, M. Glossary of Mineral Species, Tucson: Mineral. Record, 1983.

    Google Scholar 

  • Gladkochub, D.P., Donskaya, T.V., Ernst, R., et al., Proterozoic basic magmatism of the Siberian Craton: main stages and their geodynamic interpretation, Geotectonics, 2012, vol. 46, no. 4, pp. 273–284.

    Article  Google Scholar 

  • Gysi, A.P. and Willias-Jones, A.E., The thermodynamic properties of bastnasite-(ce) and parisite-(ce), Chem. Geol., 2015, vol. 392, pp. 87–101.

    Article  Google Scholar 

  • Haas, J.R., Shock, E.L., and Sassani, D.C., Rare earth elements in hydrothermal systems: estimates of standard par-tial molar thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures, Geochim. Cosmochim. Acta, 1995, vol. 59, no. 21, pp. 4329–4350.

    Article  Google Scholar 

  • Hawthorne, F.C., Oberti, R., Harlow, G.E., et al., Nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, pp. 2031–2048.

    Article  Google Scholar 

  • Henry, D.J., Guidotti, C.V., and Thomson, J.A., The Tisaturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms, Am. Mineral., 2005, vol. 90, pp. 316–328.

    Article  Google Scholar 

  • Keppler, H., Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 479–488.

    Article  Google Scholar 

  • Keppler, H. and Wyllie, P.J., Partitioning of Cu,Sn,Mo,W,U,and Th between melt and aqueous fluid in the systems haplogranite–H2O–HCl and haplogranite–H2O–HF, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 139–150.

    Article  Google Scholar 

  • Korzhinskaya, V.S. and Zaraiskii, G.P., Experimental study of influence of physicochemical conditions on solubility of tantalite–columbite in hydrothermal fluids, Granity i evolyutsiya Zemli: geodinamicheskaya pozitsiya, petrogenezis i rudonosnost' granitoidnykh batolitov Ulan-Ude: Bur. NTs SORAN, 2008, pp. 193–195.

    Google Scholar 

  • Kozlov, E.N. and Arzamastsev, A.A. Petrogenesis of metasomatic rocks in the fenitized zones of the Ozernaya Varaka alkaline ultrabasic complex, Kola Peninsula, Petrology, 2015, vol. 23, no. 1, pp. 45–67.

  • Leake, B.E., Woolley, A.R., and Arps, C.E.S., Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names, Mineral. Mag., 1997, vol. 61, pp. 295–321.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

  • Melgarejo, J.C., Costanzo, A., Bambi, A.C.J.M., et al., Subsolidus processes as a key factor on the distribution of Nb species in plutonic carbonatites: the Tchivira case, Angola, Lithos, 2012, vol. 152, pp. 187–201.

    Article  Google Scholar 

  • Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks) Zharikov, V.A. and Rusinov, V.L, Eds., Moscow: Nauchnyi Mir, 1998.

  • Mineraly. T. III, vyp. I (Minerals) Chukhrov, F.V., Eds., Moscow: Naka, 1972, Vol. 3, no. 1.

  • Morogan, V. and Woolley, A.R., Fenitization at the Alnö carbonatite complex, Sweden; distribution, mineralogy and genesis, Contrib. Mineral. Petrol., 1988, vol. 100, pp. 169–182.

    Article  Google Scholar 

  • Nedosekova, I.L., New data on carbonatites of the Il’mensky–Vishnevogorsky alkaline complex, the Southern Urals, Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 129–146.

    Article  Google Scholar 

  • Orlandi, P., Pasero, M., Rotiroti, N., Olmi, F., and Demartin, F., Gramaccioliite-(Y), a new mineral of the crichtonite group from Stura Valley, Piedmont, Italy, Eur. J. Mineral., 2004, vol. 16, pp. 171–175.

    Article  Google Scholar 

  • Panteeva, S.V., Gladkochoub, D.P., Donskaya, T.V., et al., Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion, Spectrochim. Acta, Part B: Atomic Spectroscopy, 2003, vol. 58, no. 2, pp. 341–350.

    Article  Google Scholar 

  • Pirajno, F., González-Álvarez, I., Chen, W., et al., The Gifford Creek ferrocarbonatite complex, Gascoyne province, western Australia: associated fenitic alteration and a putative link with the ~1075 Ma Warakurna lip, Lithos, 2014, vol. 202–203, pp. 100–119.

    Google Scholar 

  • Plyusnina, L.P. Eksperimental’noe issledovanie metamorfizma bazitov (Experimental Study of Basite Metamorphism) Moscow: Nauka, 1983.

    Google Scholar 

  • Rass, I.T., Abramov, S.S., Utenkov, V.A., et al., Role of fluid in the genesis of carbonatites and alkaline rocks: geochemical evidence, Geochem. Int., 2006, vol. 44, no. 7, pp. 636–655.

    Article  Google Scholar 

  • Reguir, E.P., Kressal, R.D., et al., Carbonatite-hosted niobium deposit at Aley,northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis, Ore. Geol. Rev, 2015, vol. 64, pp. 642–666.

    Article  Google Scholar 

  • Rubie, D.C. and Gunter, W.D., The role of speciation in alkaline igneous fluids during fenite metasomatism, Contrib. Mineral. Petrol., 1983, vol. 82, pp. 165–175.

    Article  Google Scholar 

  • Rudnick, R.L. and Gao, S., Composition of the continental crust, Treatise on Geochemistry, 2003, vol. 3, pp. 1–64.

    Google Scholar 

  • Samson, I.M., Williams-Jones, A.E., and Liu, W., The chemistry of hydrothermal fluids in carbonatites: evidence from leachate and sem-decrepitate analysis of fluid inclusions from Oka, Quebec, Canada, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 1979–1989.

    Article  Google Scholar 

  • Savel’eva, V.B., Bazarova, E.P., and Danilov, B.S., New finds of carbonatite-like rocks in the western Baikal Region, Dokl. Earth Sci., 2014, vol. 459, pp. 1483–1487.

    Article  Google Scholar 

  • Savel’eva, V.B., Demonterova, E.I., Danilova, Yu.V., et al., New carbonatite complex in the western Baikal Area, southern Siberian Craton: mineralogy, age, geochemistry, and petrogenesis, Petrology, 2016, vol. 24, no. 3, pp. 271–302.

    Google Scholar 

  • Smith, M.P., Henderson, P., and Campbell, L.S., Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 3141–3160.

    Article  Google Scholar 

  • Smith, M.P., Metasomatic silicate chemistry at the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China: contrasting chemistry and evolution of feminizing and mineralizing fluids, Lithos, 2007, vol. 93, pp. 126–148.

    Google Scholar 

  • Sorokhtina, N.V., Kogarko, L.N., Shpachenko, A.K., et al., Geochemistry and Age of the Complex of Alkaline Metasomatic Rocks and Carbonatites of the Gremyakha–Vyrmes Massif, Kola Peninsula, Geochem. Int., 2012, vol. 50, no. 12, pp. 975–987.

    Article  Google Scholar 

  • Stachel, T., Brey, G., and Lorenz, V., Carbonatite magmatism and fenitization of the epiclastic caldera-fill at Gross Brukkaros (Namibia), Bull. Volcanol, 1995, no. 57, pp. 185–196.

    Article  Google Scholar 

  • Ustinov, V.I. and Rybakov, V.G., On the Lower Proterozoic stratigraphy of central Western Baikal region, Stratigrafiya dokembriya regiona srednei Sibiri (Precambrian Stratigraphy of the Middle Siberia), Leningrad: Nauka, 1983, pp. 60–65.

    Google Scholar 

  • Woolley, A.R., A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites, Mineral. Mag., 1982, vol. 46, pp. 13–17.

    Article  Google Scholar 

  • Woolley, A.R. and Kempe, D.R.C., Carbonatite: nomenclature, average chemical compositions, and element distributions, Carbonatites: Genesis and Evolution, London: Unwin Hyman, 1989.

    Google Scholar 

  • Zaraiskii, G.P., Zonal’nost’ i usloviya obrazovaniya metasomaticheskikh porod (Zoning and Conditions of Formation of Metasomatic Rocks), Moscow: Nauka, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Savelyeva.

Additional information

Original Russian Text © V.B. Savelyeva, E.P. Bazarova, V.V. Sharygin, N.S. Karmanov, S.V. Kanakin, 2017, published in Geologiya Rudnykh Mestorozhdenii, 2017, Vol. 59, No. 4, pp. 319–345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyeva, V.B., Bazarova, E.P., Sharygin, V.V. et al. Altered rocks of the Onguren carbonatite complex in the Western Tansbaikal Region: Geochemistry and composition of accessory minerals. Geol. Ore Deposits 59, 315–340 (2017). https://doi.org/10.1134/S1075701517040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517040055

Navigation