Skip to main content
Log in

Nanoparticles of noble metals in the supergene zone

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Formation of noble metal nanoparticles is related to various geological processes in the supergene zone. Dispersed mineral phases appear during weathering of rocks with active participation of microorganisms, formation of soil, in aqueous medium and atmosphere. Invisible gold and other noble metals are incorporated into oxides, hydroxides, and sulfides, as well as in dispersed organic and inorganic carbonic matter. Sulfide minerals that occur in bedrocks and ores unaltered by exogenic processes and in cementation zone are among the main concentrators of noble metal nanoparticles.

The ability of gold particles to disaggregate is well-known and creates problems in technological and analytical practice. When Au and PGE nanoparticles and clusters occur, these problems are augmented because of their unusual reactions and physicochemical properties. The studied gold, magnetite, titanomagnetite and pyrite microspherules from cementation zone and clay minerals of laterites in Republic of Guinea widen the knowledge of their abundance and inferred formation conditions, in particular, in the contemporary supergene zone. Morphology and composition of micrometer-sized Au mineral spherules were studied with SEM and laser microprobe. The newly formed segregations of secondary gold on the surface of its residual grains were also an object of investigation. The character of such overgrowths is the most indicative for nanoparticles. The newly formed Au particles provide evidence for redistribution of ultradispersed gold during weathering. There are serious prerequisites to state that microorganisms substantially control unusual nano-sized microspherical morphology of gold particles in the supergene zone. This is supported by experiments indicating active absorption of gold by microorganisms and direct evidence for participation of Ralstonia metallidurans bacteria in the formation of peculiar corroded bacteriomorphic surface of gold grains. In addition, the areas enriched in carbon and nitrogen have been detected with SEM on the surface of gold spherules from Guinea. Such organic compounds as serine, alanine, and glycine are identified on their surface with Raman spectroscopy. The experiments have been carried out and new data have been obtained indicating the role of micromycetes in concentration and distribution of noble metals in ferromanganese nodules of the World Ocean. Au and Pt were detected in the system with radioisotopes. It has been established that two forms of gold distribution develop within pseudomorphs of fungi colonies: (1) as pseudomorphic concentrates and (2) dispersed form unrelated to the colony structure. Inhomogeneities in distribution of dispersed platinum are manifested in the form of linear anomalies with elevated concentrations at the margins of the colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amosov, R.A., Kozyreva, N.A., and Deinekina, L.M., Morphology of Unrecoverable Gold in Weathering Mantles, Dokl. Akad. Nauk SSSR, 1988, vol. 303, no. 3, pp. 711–714.

    Google Scholar 

  • Bancroft, G.M. and Giller, J., Gold Deposition at Low Temperature on Sulphide Minerals, Nature, 1982, vol. 298, pp. 730–731.

    Article  Google Scholar 

  • Becker, U., Hochella, M.F., and Vaughan, D.J., The Adsorption of Gold to Galena Surfaces: Calculation of Adsorption/Reduction Energies, Reaction Mechanisms, XPS Spectra, and STM Images, GCA, 1997, vol. 61, no. 17, pp. 3565–3585.

    Google Scholar 

  • Belyanin, D.K., Zhmodik, S.M., and Roslyakov, N.A., Hydrogenic and Biogenic Gold in Oceanic Ferromanganese Nodules, in Mater. Vseross. konf. “Samorodnoe zoloto: tipomorfizm mineral’nykh assotsiatsii, usloviya obrazovaniya mestorozhdenii, zadachi prikladnykh issledovanii” (Proceedings of All-Russia Conference on Native Gold: Typomorphism of Mineral Assemblages, Formation Conditions of Deposits, and Problems of Applied Research), Moscow: IGEM RAN, 2010, vol. 1, pp. 65–67.

    Google Scholar 

  • Benzerara, K., Yon, T.H., Menguy, N., et al., Nanoscale Environments Associated with Bioweathering of a Mg-Fe-Pyroxene, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 2, pp. 979–982.

    Article  Google Scholar 

  • Bielinska, A., Eichman, J.D., Lee, I., et al., Imaging Auoo-PAMAM Gold-Dendrimer Nanocomposites in Cells, J. Nanoparticle Res., 2002, vol. 4, pp. 395–403.

    Article  Google Scholar 

  • Binns, C., Nanoclusters Deposited on Surfaces, Surf. Sci. Rep., 2001, vol. 44, pp. 1–49.

    Article  Google Scholar 

  • Blyuman, B.A. and Ibragimova, E.K., Biogenic and Hydrogenic Gold of Linear Weathering Zone, in Mater. XIV mezhdunar. soveshch. po geologii rossypei i mestorozhdenii kor vyvetrivaniya (Proceedings of XIV Intern. Conference on Geology of Placers and Deposits in Weathering Mantles), Novosibirsk: Apel’sin, 2010, pp. 103–106.

    Google Scholar 

  • Borel, J.-P., Thermodynamic Size Effect and the Structure of Metallic Clusters, Surf. Sci., 1981, vol. 106, pp. 1–9.

    Article  Google Scholar 

  • Bortnikov, N.S., Bugel’sky, Yu.Yu., Slukin, A.D., et al., Main Aspects of Science on Ore-Bearing Weathering Mantles, in Mater. XIV mezhdunar. soveshch. po geologii rossypei i mestorozhdenii kor vyvetrivaniya (Proceedings of XIV Intern. Conference on Geology of Placers and Deposits in Weathering Mantles), Novosibirsk: Apel’sin, 2010, pp. 122–126.

    Google Scholar 

  • Buffar, P.A. and Borel, J.-P., Size Effect on the Melting Temperature of Gold Particles, Phys. Rev., 1976, vol. A13, pp. 2287–2298.

    Google Scholar 

  • Dart, R.C., Gold in Calcrete: A Continental to Profile Scale Study of Regolith Carbonates and Their Association with Gold Mineralization, Thesis Submitted for the Degree of Doctor Philosophy, Faculty of Science, The University of Adelaide, 2009.

  • Dilabio, R.N.W., Newsome, J.W., McIvor, D.F., and Lowenstein, P.L., The Spherical Form of Gold: Man-Made Or Secondary?, Econ. Geol., 1988, vol. 3, pp. 153–162.

    Article  Google Scholar 

  • Dyusembaeva, K.Sh. and Rodnova, V.I., Ball-Shaped Gold Grains from Oxidation Zone of the Novodneprovka Deposit, in Tr. mezhdunar. nauchno-prakticheskoi konf. “Problemy rudnykh mestorozhdenii i povysheniya effektivnosti geologorazvedochnykh rabot” (Proceedings of Intern. Scientific-Practical Conference on Ore Deposits and Enhancement of Efficiency of Geological Exploration), Tashkent: Inst. Mineral Res., 2003, pp. 244–246.

    Google Scholar 

  • Foos, E.E., Snow, A.W., and Twigg, M.E., Synthesis and Characterization of Water-Soluble Gold Nanoclusters of Varied Core Size, J. Cluster Sci., 2002, vol. 13, no. 4, pp. 543–552.

    Article  Google Scholar 

  • Gamyanin, G.N., Zhdanov, Yu.Ya., and Moiseenko, V.G., Natural and Technogenic Mineral spheroids, Tikhookean. Geol., 2000, vol. 19, no. 4, pp. 52–60.

    Google Scholar 

  • Gardea-Torresdey, J.L., Tiemann, K.J., Gamez, G., et al., Gold Nanoparticles Obtained by Bio-Precipitation from Gold(III) Solutions, J. Nanoparticle Res., 1999, vol. 1, pp. 397–404.

    Article  Google Scholar 

  • Gorbachev, P.N., Bezmen, N.I., and Azif, M., Solubility of Pd in Hydrous Silicate Melts from Experimental Data, Vestn. Otd. Nauk o Zemle, 2006, no. 1, pp. 1–2.

  • Hochella, M.F., Nanoscience and Technology: the Next Revolution in the Earth Sciences, Earth Planet. Sci. Lett., 2002, vol. 203, pp. 593–605.

    Article  Google Scholar 

  • Hochella, M.F. and Madden, A.S., Earth’s Nano-Compartment for Toxic Metals, Elements, 2005, vol. 1, pp. 199–203.

    Article  Google Scholar 

  • Hsu, W., Huss, G.R., and Wasserburg, G.J., Ion Probe Measurements of Os, Ir, Pt, and Au in Individual Phases of Iron Meteorites, Geochim. Cosmochim. Acta, 2000, vol. 64, no. 6, pp. 1133–1147.

    Article  Google Scholar 

  • Kretzschmar, R. and Schafer, T., Metal Retention and Transport of Colloidal Particles in the Environment, Elements, 2005, vol. 1, pp. 205–210.

    Article  Google Scholar 

  • Kuimova, N.G. and Moiseenko, V.G., Biogenic Gold Mineralization in Nature and Experiment, Litosfera, 2006, no. 3, pp. 83–95.

  • Machairas, G., Contribution à l’étude minéralogique et metallogénique de l’or, Bureau Rech. Géol. Min. Bull, 1970, Sec. II, no. 3.

  • Maiorova, T.P., Arteeva, T.A., and Filippov, V.N., Bacteriomorphic Structures on Native Gold in Oxidation Zone of a Gold-Quartz-Sulfide Deposit of the Polar Urals, in Mater. XIV mezhdunar. soveshch. po geologii rossypei i mestorozhdenii kor vyvetrivaniya (Proceedings of XIV Intern. Conference on Geology of Placers and Deposits in Weathering Mantles), Novosibirsk: Apel’sin, 2010, pp. 406–408.

    Google Scholar 

  • Mikhlin, Y.L. and Romanchenko, A.S., Gold Deposition on Pyrite and the Common Sulfide Minerals: An STM/STS and SR-XPS Study of Surface Reactions and Au Nanoparticles, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 5985–6001.

    Article  Google Scholar 

  • Mikhlin, Y.L., Romanchenko, A.S., and Asanov, I.P., Oxidation of Arsenopyrite and Deposition of Gold on the Oxidized Surfaces: a Scanning Probe Microscopy, Tunneling Spectroscopy, and XPS Study, Geochim. et. Cosmochim. Acta, 2006, vol. 70, no. 19, pp. 4874–4888.

    Article  Google Scholar 

  • Mironov, A.G., Al’mukhamedov, A.I., Geletii, V.F., et al., Eksperimental’nye issledovaniya geokhimii zolota s pomoshch’yu metoda radioizotopnykh indikatorov (Experimental Study of Gold Geochemistry Using Radioactive Isotopes), Novosibirsk: Nauka, 1989.

    Google Scholar 

  • Mulvaney, P., Not All That’s Gold Does Glitter, MRS Bull., 2001, vol. 26, pp. 1009–1014.

    Article  Google Scholar 

  • Mycroft, J.R., Bancroft, G.M., McIntyre, N.S., and Lorimer, J.W., Spontaneous Deposition of Gold on Pyrite from Solution Containing Au(III) and Au(I) Chlorides: Part I, a Surface Study, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3351–3365.

    Article  Google Scholar 

  • Nanomineralogiya. Ul’trai mikrodispersnoe sostoyanie mineral’nogo veshchestva (Nanomineralogy. Ultra- and Microdispersed State of Mineral Matter), St. Petersburg: Nauka, 2005.

  • Nanoparticles and the Environment, Banfield, J.F. and Navrotsky, A., Eds, Washington, DC: Mineral. Soc. Amer, Rev. Mineral. Geochem., 2001, vol. 44.

    Google Scholar 

  • Nanotechnology Research Directions, Roco, M.C., Williams, S., and Alivisatos, P., Eds., Berlin, Springer, 1999; Moscow: Mir, 2002.

    Google Scholar 

  • Nesterenko, G.V., Prognoz zolotogo orudeneniya po rossypyam (Forecast of Gold Mineralization from Placers), Novosibirsk: Nauka, 1991.

    Google Scholar 

  • Novgorodova, M.I., Boyarskaya, R.V., and Yusupov, R.G., Growth and Corrosion of Native Zinc in Gaseous Medium, Zap. Vsesoyuz. Mineral. Ob-Va, 1986, vol. 115, no. 1, pp. 16–25.

    Google Scholar 

  • Novgorodova, M.I., Gamyanin, G.N., Zhdanov, Yu.Ya., et al., Microspherules of Aluminosilicate Glass in Gold Ores, Geochem. Int., 2003, vol. 41, no. 1, pp. 83–93.

    Google Scholar 

  • Palenik, C.S., Utsunomiya, S., Reich, M., et al., Invisible Gold Revealed: Direct Imaging of Gold Nanoparticles from a Carlin-Type Deposit, Am. Mineral., 2004, vol. 89, pp. 1359–1366.

    Google Scholar 

  • Petrovskaya, N.V., Samorodnoe zoloto (Native Gold), Moscow: Nauka, 1973.

    Google Scholar 

  • Reich, M., Kesler, S.E., Utsunomiya, S., et al., Solubility of Gold in Arsenian Pyrite, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 11, pp. 2781–2796.

    Article  Google Scholar 

  • Reith, F., Lengke, M.F., Falconer, D., Craw, D., and Southam, G., The Geomicrobiology of Gold, The ISME Journal, 2007, vol. 1, pp. 567–584.

    Article  Google Scholar 

  • Santra, A.K., Yang, F., and Goodman, D.W., The Growth of Ag-Au Bimetallic Nanoparticles on TiO2(110), Surf. Sci., 2004, vol. 548, pp. 324–332.

    Article  Google Scholar 

  • Scaini, M.J., Bancroft, G.M., and Knipe, S.W., An XPS, AES, and SEM Study of the Interactions of Gold and Silver Chloride Species with PbS and Fe2S: Comparison to Natural Samples, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1223–1231.

    Article  Google Scholar 

  • Shkol’nik, E.L., Zhegallo, E.A., Bogatyrev, B.A., et al., Biomorfnye struktury v boksitakh (po rezul’tatam elektronno-mikroskopicheskogo izucheniya) (Biomorphic Structures in Bauxites from Electron Microscopy), Moscow: Eslan, 2004.

    Google Scholar 

  • Sisson, T.W., Native Gold in a Hawaiian Alkalic Magma, Econ. Geol., 2003, vol. 98, pp. 643–648.

    Google Scholar 

  • Southam, G., Lengke, M.F., Fairbrother, L., and Reith, F., The Biogeochemistry of Gold, Elements, vol. 5, pp. 303–307.

  • Tauson, V.L., Mironov, A.G., Smagunov, N.V., et al., Gold in Sulfides: The State of the Art on Mode of Occurrence and Outlook for Experimental Study, Geol. Geofiz., 1996, vol. 37, no. 3, pp. 3–14.

    Google Scholar 

  • Tauson, V.L., Pastushkova, T.M., and Bessarabova, O.I., On Limit and Mode of Incorporation of Gold in Hydrothermal Pyrite, Geol. Geofiz., 1998, vol. 39, no. 7, pp. 924–933.

    Google Scholar 

  • Tauson, V.L. and Smagunov, N.V., Composition of the Surface of Pyrrhotite (Fe1-xS) Crystals Synthesized in Association with Greenockite (α(Cd,Fe)S) under Hydrothermal Conditions: Introduction into the Geochemistry of Nonautonomous Phases, Geochem. Int., 2004, vol. 42, no. 4, pp. 377–382.

    Google Scholar 

  • Zhmodik, S.M., Gold-Concentric Systems of Ophiolitic Belts, Doctoral Sci. (Geol.-Mineral.) Dissertation, Novosibirsk, 2004.

  • Zhmodik, S.M., Anoshin, G.N., Mironov, A.G., et al., Nanoparticles of Noble Metals in Geological Processes, in Mineralogicheskaya interventsiya v mikroi nanomire (Mineralogical Intervention in the Micro- and Nanoworld), Syktyvkar: Inst. Geol., Komi Sci. Center, Ural Branch, RAS, 2009, pp. 25–27.

    Google Scholar 

  • Zhmodik, S.M., Anoshin, G.N., Sobolev, N.V., et al., Role of Nanoparticles in Geological Processes of Dispersion and Concentration of Noble and Rare Metals, in Nauka i nanotekhnologii. Mater. nauchnoi sessii Prezidiuma SO RAN 22 dek. 2006 g (Proceedings of Scientific Session of the Presidium of Siberian Branch, Russian Acad. Sci. on Science and Nanotechnologies, December 22, 2006), Novosibirsk: Siberian Branch RAS, 2007, pp. 208–226.

    Google Scholar 

  • Zhmodik, S.M., Belyanin, D.K., Mironov, A.G., et al., Role of the Biogenic Factor in Platinum Accumulation by Oceanic Ferromanganese Nodules, Dokl. Earth Sci., 2009, vol. 427, no. 5, pp. 777–782.

    Article  Google Scholar 

  • Zhmodik, S.M., Kanakin, S.V., Kulikov, A.A, and Shestel, S.T., Autoradiographic Study of Dispersed Gold Distribution in Pyrite from Carbonaceous Sequences of the Baikal-Patom District, Dokl. Akad. Nauk SSSR, 1989, vol. 306, no. 6, pp. 1460–1463.

    Google Scholar 

  • Zhmodik, S.M., Mironov, A.G., and Zhmodik, A.S., Zolotokontsentriruyushchie sistemy ofiolitovykh poyasov (na primere Sayano-Baikalo-Muiskogo poyasa) (Gold-Concentric Systems of Ophiolitic Belts: A Case of the Sayan-Baikal-Muya Belt), Novosibirsk: GEO, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Zhmodik.

Additional information

Original Russian Text © S.M. Zhmodik, Yu.A. Kalinin, N.A. Roslyakov, A.G. Mironov, Yu.L. Mikhlin, D.K. Belyanin, N.A. Nemirovskaya, A.M. Spiridonov, G.V. Nesterenko, E.V. Airiyants, T.N. Moroz, T.A. Bul’bak, 2012, published in Geologiya Rudnykh Mestorozhdenii, 2012, Vol. 54, No. 2, pp. 168–183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhmodik, S.M., Kalinin, Y.A., Roslyakov, N.A. et al. Nanoparticles of noble metals in the supergene zone. Geol. Ore Deposits 54, 141–154 (2012). https://doi.org/10.1134/S1075701512020067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701512020067

Keywords

Navigation