Skip to main content
Log in

The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold-quartz and epithermal stibnite ores

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

New mineralogical, thermobarometric, isotopic, and geochemical data provide evidence for long and complex formation history of the Sarylakh and Sentachan Au-Sb deposits conditioned by regional geodynamics and various types of ore mineralization, differing in age and source of ore matter combined in the same ore-localizing structural units. The deposits are situated in the Taryn metallogenic zone of the East Yakutian metallogenic belt in the central Verkhoyansk-Kolyma Fold Region. They are controlled by the regional Adycha-Taryn Fault Zone that separates the Kular-Nera Terrane and the western part of the Verkhoyansk Fold-Thrust Belt. The fault extends along the strike of the northwest-trending linear folds and is deep-rooted and repeatedly reactivated. The orebodies are mineralized crush zones accompanied by sulfidated (up to 100 m wide) quartz-sericite metasomatic rocks and replacing dickite-pyrophyllite alteration near stibnite veinlets. Two stages of low-sulfide gold-quartz and stibnite mineralization are distinguished. The formation conditions of the early milk white quartz in orebodies with stibnite mineralization at the Sarylakh and Sentachan deposits are similar: temperature interval 340–280°C, salt concentration in fluids 6.8–1.6 wt % NaCl equiv, fluid pressure 3430–1050 bar, and sodic bicarbonate fluid composition. The ranges of fluid salinity overlapped at both deposits. In the late regenerated quartz that attends stibnite mineralization, fluid inclusions contain an aqueous solution with salinity of 3.2 wt % NaCl equiv and are homogenized into liquid at 304–189°C. Syngenetic gas inclusions contain nitrogen 0.19 g/cm3 in density. The pressure of 300 bar is estimated at 189°C. The composition of the captured fluid is characterized as K-Ca bicarbonatesulfate. The sulfur isotopic composition has been analyzed in pyrite and arsenopyrite from ore and metasomatic zones, as well as in coarse-, medium-, and fine-grained stibnite varieties subjected to dynamometamorphism. The following δ34S values, ‰ have been established at the Sarylakh deposit: −2.0 to −0.9 in arsenopyrite, −5.5 to −1.1 in pyrite, and −5.5 to −3.6 in stibnite. At the Sentachan deposit: −0.8 to +1.0 in arsenopyrite, +0.5 to +2.6 in pyrite, and −3.9 to +0.6 in stibnite. Sulfides from the Sentachan deposit is somewhat enriched in 34S. The 18O of milk white quartz at the Sarylakh deposit varies from +14.8 to 17.0‰ and from +16.4 to + 19.3‰ at the Sentachan. The δ18O of regenerated quartz is +16.5‰ at the Sarylakh and +17.6 to +19.8‰ at the Sentachan. The δ18O of carbonates varies from +15.0 to 16.3% at the Sarylakh and from +16.7 to +18.2‰ at the Sentachan. The δ13C of carbonates ranges from −9.5 to −12.1‰ and −7.8 to −8.5‰, respectively. The calculated \( \delta ^{18} O_{H_2 O} \) of the early fluid in equilibrium with quartz and dolomite at 300δC are +7.9 to +10.1‰ for the Sarylakh deposit and +9.5 to +12.4‰ for the Sentachan deposit (+4.9 and 6.0‰ at 200°C for the late fluid, respectively). Most estimates fall into the interval characteristic of magmatic water (°18O = +5.5 to +9.5‰).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akinin, V.V., Prokop’ev, A.V., Toro, J., et al., U-Pb SHRIMP Ages of Granitoides from the Main Batholith Belt (North East Asia), Dokl. Akad. Nauk, 2009, vol. 426, no. 2, pp. 216–221 [Dokl. Earth Sci. (Engl. Transl.), vol. 426, no. 4, pp. 605–610].

    Google Scholar 

  • Amuzinsky, V.A., Anisimova, G.S., Zhdanov, Yu.Ya., et al., Sarylakhskoe i Sentachanskoe zoloto-sur’myanye mestorozhdeniya: Geologiya, mineralogiya i geokhimiya (The Sarylakh and Sentachan Gold-Antimony Deposits: Geology, Mineralogy, and Geochemistry), Moscow: MAIK Nauka/Interperiodica, 2001.

    Google Scholar 

  • Ashley, P.M. and Grow, D., Structural Controls on Hydrothermal Alteration and Gold-Antimony Mineralization in the Yillgrove Area, NSW, Australia, Miner. Deposita, 2004, vol. 39, pp. 223–239.

    Article  Google Scholar 

  • Bellot, J-P., Lerouge, C., Bailly, L., and Bouchot, V., The Biards Sb-Au-Bearing Shear Zone (Massif Central, France): An Indicator of Crustal-Scale Transcurrent Tectonics Guiding Late Variscan Collapse, Econ. Geol., 2003, vol. 98, pp. 1427–1447.

    Article  Google Scholar 

  • Berger, V.I., Sur’myanye mestorozhdeniya (Antimony Deposits), Leningrad: Nedra, 1978.

    Google Scholar 

  • Bodnar, R.J. and Vityk, M.O., Interpretation of Microthermometric Data for H2O-NaCl Fluid Inclusions, Fluid Inclusions in Minerals: Methods and Applications. Pontignano: Siena, 1994, p. 117–130.

  • Boese, R., Antimonglanzgange Van Gravelotte in der Murchison Range in Nordost Transvaal, Sudafrica, Dissertation, Hamburg: Hamburg Univ, 1964.

    Google Scholar 

  • Borisenko, A.S., Study of Salt Composition of Fluid Inclusions in Minerals with Cryometric Method, Geol. Geofiz., 1977, vol. 18, no. 8, p. 16–27.

    Google Scholar 

  • Bortnikov, N.S., Geochemistry and Origin of the Ore-Forming Fluids in Hydrothermal-Magmatic Systems in Tectonically Active Zones, Geol. Rudn. Mestorozhd., 2006, vol. 48, no. 1, p. 328 [Geol. Ore Deposits (Engl. Transl.), vol. 48, no. 1, pp. 1–22].

    Google Scholar 

  • Bortnikov, N.S., Bryzgalov, I.A., Krivitskaya, N.N., et al., The Maiskoe Multimegastage Disseminated Gold-Sulfide Deposit (Chukotka, Russia): Mineralogy, Fluid Inclusions, Stable Isotopes (O and S), History, and Conditions of Formation, Geol. Rudn. Mestorozhd., 2004, vol. 46, no. 6, p. 475–509 [Geol. Ore Deposits (Engl. Transl.), vol. 46, no. 6, pp. 409–440].

    Google Scholar 

  • Bortnikov, N.S., Gamyanin, G.N., Alpatov, V.V., et al., Mineralogy, Geochemistry and Origin of the Nezhdaninsk Gold Deposit (Sakha-Yakutia, Russia), Geol. Rudn. Mestorozhd., 1998, no. 2, p. 137–156 [Geol. Ore Deposits (Engl. Transl.), vol. 40, no. 2, pp. 121–138].

  • Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., Fluid Composition and Origin in the Hydrothermal System of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia, Geol. Rudn. Mestorozhd., 2007, vol. 49, no. 2, p. 99–145 [Geol. Ore Deposits (Engl. Transl.), vol. 49, no. 2, pp. 87–128].

    Google Scholar 

  • Brown, P., FLINCOR: a Computer Program for the Reduction and Investigation of Fluid Inclusion Data, Am. Mineral., 1989, vol. 74, p. 1390–1393.

    Google Scholar 

  • Cabri, L.J., Newville, M., Cordon, R.A., et al., Chemical Speciation of Gold in Arsenopyrite, Can. Mineral., 2000, vol. 38, p. 1265–1281.

    Article  Google Scholar 

  • Clayton, R.E. and Spiro, B., Sulfur, Carbon and Oxygen Isotope Studies of Early Variscan Mineralisation and Pb-Sb Vein Deposits in the Cornubian Orefield: Implications for the Scale Fluid Movements During Variscan Deformation, Miner. Deposita, 2000, vol. 35, pp. 315–331.

    Article  Google Scholar 

  • Collins, P.L.P., Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity, Econ. Geol., 1979, vol. 74, pp. 1435–1444.

    Article  Google Scholar 

  • Darling, R.S., An Extended Equation to Calculate NaCl Contents from Final Clathrate Melting Temperatures in H2O-CO2-NaCl Fluid Inclusions: Implications for PT-Isochors Location, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 3869–3871.

    Article  Google Scholar 

  • Dill, H.G., Weiser, T., Bernhardt, I.R., and Kilibarda, C.R., The Composite Gold-Antimony Vein Deposit at Kharma (Bolivia), Econ. Geol., 1995, vol. 90, pp. 51–66.

    Article  Google Scholar 

  • Field, C.W. and Fifarek, R.H., Light Stable-Isotope Systematics in the Epithermal Systems, Rev. Econ. Geol, 1985, vol. 2, p. 99–128.

    Google Scholar 

  • Flerov, B.L., Olovorudnye mestorozhdeniya Yano-Kolymskogo skladchatoi oblasti (Tin Deposits of the Yana-Kolyma Fold Region), Novosibirsk: Nauka, 1976.

    Google Scholar 

  • Gamyanin, G.N., Types of Gold Deposits in the Eastern Yakutia, in Voprosy Rudonosnosti Yakutii (Ore Potential of Yakutia), Yakutsk, 1974, pp. 5–34.

  • Gamyanin, G.N., Mineralogo-geneticheskie aspekty zolotogo orudeneniya Verkhoyano-Kolymskikh mezozoid (Mineralogical and Genetic Aspects of Gold Mineralization of the Verkhoyansk-Kolyma Mesozoides), Moscow: GEOS, 2001.

    Google Scholar 

  • Gamyanin, G.N., Nekrasov, I.Ya., Zhdanov, Yu.Ya., et al., Mode of Occurrence and Formation Conditions of aurostibite, Zap. Vseross. Mineral. O-va, 1984, vol. 113, no. 4, pp. 196–205.

    Google Scholar 

  • Gamyanin, G.N., Zhdanov, Yu.Ya., Leskova, N.V., and Nekrasov, I.Ya., Auroantimonate, a New Natural Gold Compound, Dokl. Akad. Nauk SSSR, 1988, vol. 301, no. 4, p. 947–950.

    Google Scholar 

  • Gamyanin, G.N., Zhdanov, Yu.Ya., Nekrasov, I.Ya., and Leskova, N.V., Mustard Gold from Au-Sb Ores of Eastern Yakutia, in Novye Dannye o Mineralakh, 1987, no. 34, p. 13–20.

  • Genkin, A.D., Phenomena of Decomposition of Ore Minerals, in Tekstury i struktury rud (Textures and Structures of Ores), Moscow: Gosgeoltekhizdat, 1958, p. 242–258.

    Google Scholar 

  • Genkin, A.D., Bortnikov, N.S., Cabri, L., et al., A Multidisciplinary Study of Invisible Gold in Arsenopyrite from Four Mesothermal Gold Deposits in Siberia, Russian Federation, Econ. Geol., 1998, vol. 93, no. 24, p. 463–487.

    Article  Google Scholar 

  • Goldfarb, R.J., Ayuso, R., Miller, M.L., et al., The Late Cretaceous Donlin Creek Gold Deposit, Southwestern Alaska: Controls on Epizonal Ore Formation, Econ. Geol., 2004, vol. 99, pp. 643–671.

    Article  Google Scholar 

  • Goldfarb, R.J., Baker, N., and Dub, B., Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes, Econ. Geol., vol. 100, 2005, pp. 407–450.

    Google Scholar 

  • Goldfarb, R.J., Newberry, R.J., Pickthhorn, W.J., and Gent, C.L., Oxygen, Hydrogen, and Sulfur Isotope Studies in the Juneau Gold Belt, Southeastern Alaska: Constraints on the Origin of Hydrothermal Fluids, Econ. Geol., 1991, vol. 86, pp. 66–80.

    Article  Google Scholar 

  • Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., et al., The World-Class Natalka Gold Deposit, Northeast Russia: REE Patterns, Fluid Inclusions, Stable Oxygen Isotopes, and Formation Conditions of Ore, Geol. Rudn. Mestorozhd., 2008, vol. 50, no. 5, p. 414–444 [Geol. Ore Deposits (Engl. Transl.), vol. 50, no. 5, pp. 362–390].

    Google Scholar 

  • Gray, J.E., Gent, C.A., Snee, L.W., and Wilson, F.H., Epithermal Mercury-Antimony and Gold-Bearing Vein Lodes of Southwestern Alaska, Econ. Geol. Monograph, 1997, Vol. 9, pp. 287–305.

    Google Scholar 

  • Indolev, L.N., Zhdanov, Yu.Ya., and Supletsov, V.M., Sur’myanoe orudenenie Verkhoyano-Kolymskoi provintsii (Antimony Mineralization of the Verkhoyansk-Kolyma Province), Novosibirsk: Nauka, 1980.

    Google Scholar 

  • Ivensen, Yu.P. and Levin, V.I., Geneticheskie tipy zolotogo orudeneniya i zolotorudnye formatsii, in Zolotorudnye formatsii geokhimiya zolota Verkhoyano-Chukotskoi skladchatoi oblasti (Gold Deposits and Geochemistry of the Verkhoyansk-Chukotka Fold Region), Moscow: Nauka, 1975, pp. 5–120.

    Google Scholar 

  • Jia, Y. and Kerrich, R., Giant Quartz Vein Systems in Accretionary Orogenic Belts: the Evidence for a Metamorphic Fluid Origin from δ15N and δ13C Studies, Earth Planet. Sci. Lett., 2000, vol. 184, pp. 211–224.

    Article  Google Scholar 

  • Kalyuzhnyi, V.A., Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh (Principles of the Sudy of Mineral-Forming Fluids), Kiev: Naukova Dumka, 1982.

    Google Scholar 

  • Kerrich, R. and Fyfe, W.S., The Gold-Carbonate Association: Source of CO2 and CO2 Fixation Reactions in Archaean Lode Deposits, Chem. Geol., 1981, vol. 33, nos. 3/4, pp. 265–294.

    Article  Google Scholar 

  • Kontak, D.J. and Kerrich, R., An Isotopic (C, O, Sr) Study of Vein Gold Deposits in the Meguma Terrane, Nova Scotia: Implication from Source Reservoirs, Econ. Geol., 1997, vol. 92, pp. 161–180.

    Article  Google Scholar 

  • Kontak, D.J., Horne, R.J., and Smith, P.K., Hydrothermal Characterization of the West Gore Sb-Au Deposit, Meguma Terrane, Nova Scotia, Canada, Econ. Geol., 1996, vol. 91, pp. 1239–1262.

    Article  Google Scholar 

  • Kreuzer, O.P., Intrusion-Hosted Mineralization in the Charters Towers Goldfield, North Queensland: New Isotopic and Fluid Inclusion Constraints on the Timing and Origin of the Auriferous Veins, Econ. Geol., 2005, vol. 100, pp. 1583–1603.

    Article  Google Scholar 

  • Kryazhev, S.G., Vasyuta, Yu.V., and Kharrasov, M.K., Technique of Bulk Analysis of Inclusions in Quartz, in Materialy XI mezhdunar. konf. po termobarogeokhimii (Proceedings of XI Intern. Conf. on Thermobarogeochemistry) Aleksandrov: VNIISIMS, 2003, pp. 6–10.

    Google Scholar 

  • Mackey, K.G., Fujita, K., and Ruff, L.J., Crustal Thickness of Northeast Russia, Tectonophysics, 1998, vol. 284, nos. 3/4, pp. 283–297.

    Article  Google Scholar 

  • Madu, B.E., Nesbitt, B.E., and Muehlenbachs, K., A Mesothermal Gold-Stibnite-Quartz Vein Occurrence in the Canadian Cordillera, Econ. Geol., 1990, vol. 85, pp. 1260–1268.

    Article  Google Scholar 

  • Manucharyants, B.O. and Markova, E.A., Genetic Features of Au-Sb Mineralization in Yakutia, Sov. Geol., 1977, no. 1, p. 127–133.

  • Manucharyants, B.O., Prushinskaya, E.Ya., and Vladimirov, V.G., Some data on Character of Hydrothermal Solutions Forming Au and Au-Sb Mineralization, in Osnovnye parametry prirodnykh protsessov endogennogo rudoobrazovaniya (Main Parameters of Endogenic Ore Formation), Novosibirsk: Nauka, 1979, vol. 2, p. 210–220.

    Google Scholar 

  • Matsuhisa, Y., Goldsmith, J.R., and Clayton, R.N., Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water, Geochim. Cosmochim. Acta, 1979, vol. 43, p. 1131–1140.

    Article  Google Scholar 

  • McCoy, D., Newberry, R.J., Layer, P.W., et al., Plutonic-Related Gold Deposits of Interior Alaska, Econ. Geol. Monograph, 1997, vol. 9, pp. 191–241.

    Google Scholar 

  • Naz’mova, G.N. and Spiridonov, E.M., Mineral Assemblages in the Sites of Juxtapozed Gold and Antimony Mineralization, in Metody mineral. issledovanii (Methods of Mineralogical Studies), Moscow, 1977, pp. 97–102.

  • Nesbitt, B.E. and Muchlenbachs, K., Geology, Geochemistry, and Genesis of Mesothermal Lode Gold Deposits of the Canadian Cordillera: Evidence for Ore Formation from Evolved Meteoric Water, Econ. Geol. Monograph, 1989, vol. 6, pp. 553–563.

    Google Scholar 

  • Nesbitt, B.E., Muehlenbachs, K., and Murowchick, J.B., Genetic Implications of Stable Isotope Characteristics of Mesothermal Au Deposits and Related Sb and Hg Deposits in the Canadian Cordillera, Econ. Geol., 1989, vol. 84, p. 1489–1506.

    Article  Google Scholar 

  • Obolensky, A.A. and Obolenskaya, R.V., Gold-Antimony and Mercury Mineralization in Yakutia, in Geologiya i genezis endogennykh rudnykh formatsii Sibiri (Geology and Genesis of Endogenic Ore Deposits of Siberia), Novosibirsk: Nauka, 1972, p. 5364.

    Google Scholar 

  • Ohmoto, H. and Rye, R.O., Isotope of Sulfur and Carbon, in Geochemistry of Hydrothermal Ore Deposits, New York: Wiley, 1979, pp. 509–567.

    Google Scholar 

  • Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., et al., Model of Orogenic Belt Formation in Central and Northeastern Asia, Tikhookean. Geol., 2003, vol. 22, no. 6, pp. 7–42.

    Google Scholar 

  • Parfenov, L.M., Terranes and Formation History of Mesozoic Orogenic Belts of Eastern Yakutia, Tikhookean. Geol., 1995, vol. 14, no. 6, p. 32–43.

    Google Scholar 

  • Parfenov, L.M., Natapov, L.M., Sokolov, S.D., and Tsukanov, N.V., Terranes and Accretionary Tectonics of Northeastern Asia, Geotektonika, 1993, vol. 27, no. 1, p. 68–78.

    Google Scholar 

  • Petrovskaya, N.V., What Acrually Are Polygenetic Ore Deposits? Zap. VMO, 1986, vol. 116, no. 3, p. 273–287.

    Google Scholar 

  • Prokof’ev, V.Yu. and Naumov, V.B., Geochemical Features of Ore-Forming Solutions at the ZyryanovskBae-Metal Massive Sulfide Deposit, Geokhimiya, 1987, vol. 25, no. 3, p. 375–386.

    Google Scholar 

  • Prokop’ev, A.V. and Ivensen, G.V., Reconstruction of Provenances of the Late Cretaceous Arkagala Basins, Northeastern Asia, Otech. Geol., 2006, no. 5, pp. 81–91.

  • Prokop’ev, A.V., Bakharev, A.G., Toro, J., et al., Middle Paleozoic Marginal Continental Magmatism and Mesozoic Metamorphic Events in the Conjugation Zone of the North Asian Craton and the Okhotsk Terrane: New Geochemical and Geochronological Data and Their Geodynamic Interpretation, Otech. Geol., 2003, no. 6, p. 57–64.

  • Prokop’ev, A.V., Bakharev, A.G., Toro, J., and Miller, E.L., The Tas-Kystabyt Igneous Belt, Northeastern Asia: the First U-Pb (SHRIMP) and Sm-Nd Data in Granity i evolyutsiya Zemli: geodinamicheskaya pozitsiya, petrogenezis i rudonosnost’ granitoidnykh batolitov (Granites and Evolution of the Earth Geodynamic Setting, Petrogenesis, and Ore Potential of Granitoid Batholiths), Ulan-Ude: Buryat Sci. Center, 2008, pp. 305–308.

    Google Scholar 

  • Prokop’ev, A.V., Toro, J., Miller, E.L., et al., Granitoids of the Main Batholithic Belt, Northeastern Asia: New U-Pb (SHRIMP) Geochronological and Geochemical Data, in Tektonika i metallogeniya Severnoi Tsirkum-Patsifiki i Vostochnoi Azii (Tectonics and Metallogeny of the Norcern Circum-Pacific and Eastern Asia), Khabarovsk: Inst. Tectonics Geophysics, 2007, pp. 286–288.

    Google Scholar 

  • Prokopiev, A.V. and Oxman, V.S., Multi-Phase Tectonic Structures in the Collision Zone of the Kolyma-Omolon Microcontinent and the Eastern Margin of the North Asian Craton, Northeastern Russia, Stephan Mueller Spec. Publ. Ser., 2009, vol. 4, pp. 65–70.

    Article  Google Scholar 

  • Roedder, E., Fluid Inclusions in Minerals, Reviews in Mineralogy, Mineral. Soc. Amer., 1984, vol. 12; Mir, Moscow, 1987.

  • Ridley, J.R. and Diamond, L.W., Fluid Chemistry of Orogenic Lode Gold Deposits and Implications for Genetic Models, in Gold in 2000, SEG Reviews, 2000, vol. 13, pp. 141–162.

    Google Scholar 

  • Schneiderhöhn, G., Rudnye regenerirovannye mestorozhdeniya (Regenerated Ore Deposits), Moscow: Inostrannaya Literatura, 1957.

    Google Scholar 

  • Shpikerman, V.I., Domelovaya orogeniya Severo-Vostoka Azii (Pre-Cretaceous Orogeny of Northeastern Asia), Magadan: SVKNII, 1998.

    Google Scholar 

  • Shpikerman, V.I. and Goryachev, N.A., Metallogeniya skladchatykh sistem s pozitsii tektoniki plit (Metallogeny of Fold Systems in Terms of Plate Tectonics), Yekaterinburg, 1996.

  • Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya) (Tectonics, Geodynamics, and Metallogeny of the Repiblik Sakha-Yakutia), Moscow: MAIK “Nauka/Interperiodica”, 2001.

  • Vladimirov, V.G., Geology of the Adycha-Taryn Zone and Localization of Gold-Antimony Mineralization Therein Cand. Sci. (Geol.-Mineral.) Dissertation, Moscow, 1977.

  • Wilde, A. and Beirlein, F., The Giant Gold Deposit at Muruntau, Uzbekistan: Did Lightning Strike More Than Once? in Proceedings of the 13th Quadrennial IAGOD Symposium 2010, Adelaide, 2010, pp. 250–251.

  • Zharikov, V.A., Physicochemical Study of WallRock Metasomatism, Geokhimiya, 1987, vol. 25, no. 12, p. 1754–1779.

    Google Scholar 

  • Zheng, Y.-F., Oxygen Isotope Fractionation in Carbonate and Sulfate Minerals, Geochem. J., 1999, vol. 33, pp. 109–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Bortnikov.

Additional information

Original Russian Text © N.S. Bortnikov, G.N. Gamynin, O.V. Vikent’eva, V.Yu. Prokof’ev, A.V. Prokop’ev, 2010, published in Geologiya Rudnykh Mestorozhdenii, 2010, Vol. 52, No. 5, pp. 381–417.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bortnikov, N.S., Gamynin, G.N., Vikent’eva, O.V. et al. The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold-quartz and epithermal stibnite ores. Geol. Ore Deposits 52, 339–372 (2010). https://doi.org/10.1134/S1075701510050028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701510050028

Keywords

Navigation