Skip to main content
Log in

Physicochemical parameters of magmatic and hydrothermal processes at the Yaman-Kasy massive sulfide deposit, the southern Urals

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Melt and fluid inclusions in minerals have been studied and physicochemical parameters of magmatic processes and hydrothermal systems estimated at the Yaman-Kasy copper massive sulfide deposit in the southern Urals. It was established that relatively low-temperature (910–945°C) rhyodacitic melts belonging to the tholeiitic series and containing 2.7–5.2 wt % water participated in the formation of the igneous complexes that host the Yaman-Kasy deposit. As follows from ion microprobe results, these silicic magmas had a primitive character. In the distribution of trace elements, including REE, the rhyodacites are closer to basaltic rather than silicic volcanic rocks, and they are distinguished in this respect from the igneous rocks from other massive sulfide deposits of the Urals and the Rudny Altai. Two types of solutions actively took part in the formation of hydrothermal systems: (1) solutions with a moderate salinity (5–10 wt % dissolved salts) and (2) solutions with a low salinity (a value close to that of seawater or even lower). Concentrated fluids with more than 11.5 wt % dissolved salts were much less abundant. Hydrothermal solutions heated to 130–160, 160–270, or occasionally 280–310°C predominated in ore formation. The sequence of mineral-forming processes at the Yaman-Kasy deposit is demonstrated. Mineral assemblages were formed with an inversion of the parameters characterizing ore-forming solutions. An increase in the temperature and salinity of solutions at the early stages was followed by a decrease at the final stages. The evolution of the hydrothermal system at the Yaman-Kasy deposit has much in common with the parameters of black smokers in the present-day Pacific backarc basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Binns, S. D. Scott, Yu. A. Bogdanov, et al., “Hydrothermal Oxide and Gold-Rich Sulfate Deposits of Franklin Seamount, Western Woodlark Basin, Papua New Guinea,” Econ. Geol. 88(8), 2122–2153 (1993).

    Google Scholar 

  2. Yu. A. Bogdanov and A. M. Sagalevich, Geological Surveying from the Mir Manned Submercibles (Nauchnyi Mir, Moscow, 2002) [in Russian].

    Google Scholar 

  3. A. S. Borisenko, “Cryometric Analysis of Salt Composition in Fluid Inclusions in Minerals,” Geol. Geofiz. 18(8), 16–27 (1977).

    Google Scholar 

  4. N. S. Bortnikov, “On the Reliability of Arsenopyrite and Arsenopyrite-Sphalerite Geothermometers,” Geol. Rudn. Mestorozhd. 35(2), 177–191 (1993).

    Google Scholar 

  5. N. S. Bortnikov, “Paragenetic Analysis of Mineral Assemblages in Ores of Hydrothermal Nonferrous and Noble Metal Deposits,” Doctoral Dissertation in Geology and Mineralogy (Moscow, 1995).

  6. N. S. Bortnikov, M. G. Dobrovol’skaya, A. D. Genkin, et al., “Sphalerite-Galena Geothermometers: Distribution of Cadmium, Manganese and Fractionation of Sulfur Isotope,” Econ. Geol. 90, 155–180 (1995).

    Google Scholar 

  7. N. S. Bortnikov and A. P. Lisitsyn, “Formation Conditions of Modern Massive Sulfide Mounds in the Spreading Zones of the Lau and Manus Backarc Basins (Pacific Ocean),” in Geology and Mineral Resources of the World Ocean (VNIIOkengeologiya, St. Petersburg, 1995), pp. 158–173 [in Russian].

    Google Scholar 

  8. N. S. Bortnikov, V. A. Simonov, and Yu. A. Bogdanov, “Fluid Inclusions in Minerals from Modern Massive Sulfide Mounds: Physicochemical Conditions of Mineralization and Fluid Evolution,” Geol. Rudn. Mestorozhd. 46(1), 74–87 (2004) [Geol. Ore Deposits 46 (1), (2004)].

    Google Scholar 

  9. N. S. Bortnikov, O. N. Zaozerina, A. D. Genkin, and G. N. Muravitskaya, “Stannite-Sphalerite Aggregates As Possible Indicators of the Ore Formation Conditions,” Geol. Rudn. Mestorozhd. 32(5), 32–45 (1990).

    Google Scholar 

  10. W. V. Boynton, “Geochemistry of the Rare Earth Elements: Meteorite Studies,” in Rare Earth Element Geochemistry (Elsevier, Amsterdam, 1984), pp. 63–114.

    Google Scholar 

  11. N. P. Ermakov and Yu. A. Dolgov, Thermobarogeochemistry (Nedra, Moscow, 1979) [in Russian].

    Google Scholar 

  12. V. V. Gordeev, “Chemistry of Hydrothermal Solutions in the Woodlark and Manus Backarc Spreading Basins,” in Metallogeny of Modern and Ancient Oceans (TsNIGRI, NTK GEOEKSPERT, Moscow, 1992), pp. 181–183 [in Russian].

    Google Scholar 

  13. T. Graupner, C. J. Bray, E. T. C. Spooner, and P. M. Herzig, “Analysis of Fluid Inclusions in Seafloor Hydrothermal Precipitates: Testing and Application of an Integrated GC/IC Technique,” Chem. Geol. 177, 443–470 (2001).

    Article  Google Scholar 

  14. R. J. Herrington, V. V. Maslennikov, B. Spiro, V. V. Zaykov, and C. T. S. Little, “Ancient Vent Chimney in Palaeozoic Massive Sulphides of the Urals,” in Modern Ocean Floor Processes and Geological Record (Geol. Soc. Spec. Publ., London, 1998), Vol. 148, pp. 241–258.

    Google Scholar 

  15. P. M. Herzig, M. D. Hannington, Y. Fouquet, et al., “Gold-Rich Polymetallic Sulfides from the Lau Back Arc and Implications for the Geochemistry of Gold in Sea-Floor Hydrothermal Systems of the Southwest Pacific,” Econ. Geol. 88(8), 2182–2209 (1993).

    Article  Google Scholar 

  16. Hydrothermal Systems and Sedimentary Formations in the Mid-Ocean Ridges of the Atlantic Ocean (Nauka, Moscow, 1993) [in Russian].

  17. V. S. Karpukhina, V. B. Naumov, E. N. Baranov, and N. N. Kononkova, “The Melt Composition of Acid Volcanics of the Verkhneural’sk Ore District, Southern Urals: Evidence from Inclusions in Quartz,” Dokl. Akad. Nauk 358(1), 100–103 (1998) [Dokl. Earth Sci. 358 (1), 76–79 (1998)].

    Google Scholar 

  18. M. I. Kuz’min, Geochemistry of Igneous Rocks in the Phanerozoic Mobile Belts (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  19. A. S. Lapukhov, V. A. Simonov, and S. V. Kovyazin, “Origin of Igneous Complexes of the Salair Massive Sulfide Base-Metal Ore Field (Western Siberia),” Geol. Geofiz. 42(8), 1186–1195 (2001).

    Google Scholar 

  20. A. P. Lisitsyn, K. Kruk, Yu. A. Bogdanov, et al., “Hydrothermal Field of Rift Zones in the Manus Basin,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 10, 34–55 (1992).

    Google Scholar 

  21. C. T. S. Little, R. J. Herrington, V. V. Maslennikov, et al., “Silurian High-Temperature Hydrothermal Vent Community from the Southern Urals, Russia,” Nature 385(9), 146–148 (1996).

    Google Scholar 

  22. V. Luders, B. Pracejus, and P. Halbach, “Fluid Inclusion and Sulfur Isotope Studies in Probable Modern Analogue Kuroko-Type Ores from the JADE Hydrothermal Field (Central Okinawa Trough, Japan),” Chem. Geol. 173, 45–58 (2001).

    Article  Google Scholar 

  23. V. V. Maslennikov, Sedimentogenesis, Halmyrolysis, and Ecology of Paleohydrothermal Massive Sulfide Ore Fields (with Reference to the Southern Urals) (Geotur, Miass, 1999) [in Russian].

    Google Scholar 

  24. V. V. Maslennikov, Lithogenesis and Massive Sulfide Ore Formation (Inst. Mineral., Miass, 2006) [in Russian].

    Google Scholar 

  25. V. V. Maslennikov, A. Yu. Shpanskaya, and C. T. S. Little, “On the Vestimentiferas, Alvinellids, and Paleoecology in the Hydrothermal Oasis of the Uralian Paleoocean,” in Metallogeny of Ancient and Modern Oceans-97 (Miass, 1997), pp. 150–160 [in Russian].

  26. V. V. Maslennikov and V. V. Zaykov, Paleohydrothermal Massive Sulfide Ore Fields of the Marginal Oceanic Zones in the Urals: Classification, Ore Facies, and Model of Evolution (Inst. Mineral., Miass, 1998) [in Russian].

    Google Scholar 

  27. V. B. Naumov, V. S. Karpukhina, E. N. Baranov, and N. N. Kononkova, “The Melt Composition, Contents of Volatile Components and Trace Elements, and Temperatures of Quartz Crystallization in Silicic Volcanic Rocks of the Verkhneural’sk Ore District (Southern Urals),” Geokhimiya 37(4), 339–351 (1999) [Geochem. Intern. 37 (4), 289–301 (1999)].

    Google Scholar 

  28. V. B. Naumov, O. F. Mironova, V. Yu. Prokof’ev, and A. Yu. Lein, “Studies of Fluid Inclusions in Minerals from Modern Submarine Hydrothermal Vents,” Geokhimiya 29(1), 39–45 (1991).

    Google Scholar 

  29. P. Nehlig, “Salinity of Oceanic Hydrothermal Fluids: Fluid Inclusion Study,” Earth Planet. Sci. Lett. 102, 310–325 (1991).

    Article  Google Scholar 

  30. V. Pisutha-Arnold and H. Ohmoto, “Thermal History and Chemical and Isotopic Compositions of the Ore-Forming Fluids Responsible for the Kuroko Massive Sulfide Deposits in Hokuroku Distric of Japan,” Econ. Geol. 5, 523–558 (1983).

    Google Scholar 

  31. E. Roedder, Fluid Inclusions in Minerals (Reviews in Mineralogy, Mineral. Soc. America, 1984, Vol. 12; Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  32. I. B. Seravkin and Z. A. Rodicheva, The Kraka-Mednogorsk Paleovolcanic Belt (Bashkir Sci. Center, Ural. Division, Acad. Sci. USSR, Ufa, 1990) [in Russian].

    Google Scholar 

  33. T. N. Shadlun, “On Some Intergrowths of Sulfides Characteristic of Modern Oceanic and Ancient Massive Sulfide Ores,” Geol. Rudn. Mestorozhd. 33(4), 110–117 (1991).

    Google Scholar 

  34. T. N. Shadlun, N. S. Bortnikov, Yu. A. Bogdanov, et al., “Mineral Composition and Origin of Massive Sulfide Ores in the Manus Backarc Basin (Pacific Ocean),” Geol. Rudn. Mestorozhd. 34(5), 3–23 (1992).

    Google Scholar 

  35. N. Shikazono, M. Utada, and M. Shimizu, “Mineralogical and Geochemical Characteristics of Hydrothermal Alteration of Basalt in the Kuroko Mine Area, Japan: Implications for the Evolution of a Back Arc Basin Hydrothermal System,” Appl. Geochem. 10(6), 621 (1995).

    Article  Google Scholar 

  36. V. A. Simonov, Petrogenesis of Ophiolites (Thermobarogeochemical Studies) (UIGGM, Novosibirsk, 1993) [in Russian].

    Google Scholar 

  37. V. A. Simonov, N. S. Bortnikov, A. P. Lisitsyn, et al., “Physicochemical Mineral Formation Conditions in the Modern Vienna Woods Hydrothermal Sulfide Mound, the Manus Backarc Basin, Pacific Ocean,” in Metallogeny of Ancient and Modern Oceans-2002. Formation and Development of Mineral Deposits in Ophiolite Zones (Inst. Mineral., Miass, 2002a), pp. 61–68 [in Russian].

    Google Scholar 

  38. V. A. Simonov, I. V. Gas’kov, A. S. Borisenko, and S. V. Kovyazin, “Specific Features of Trace and Ore Elements and Fluids Distribution in Silicic Melts at the Yubileiny Massive Sulfide Deposit (Rudny Altai),” in Petrology of Igneous and Metamorphic Complexes (TsNTI, Tomsk, 2004), No. 4, pp. 165–170 [in Russian].

    Google Scholar 

  39. V. A. Simonov, I. V. Gas’kov, S. V. Kovyazin, and A. S. Borisenko, “Evolution of Geochemical Parameters of Silicic Melts during Formation of Massive Sulfide Deposits (Rudny Altai),” Dokl. Akad. Nauk 403(5), 674–677 (2005) [Dokl. Earth Sci. 403A (6), 935–938 (2005)].

    Google Scholar 

  40. V. A. Simonov, S. V. Kovyazin, and Yu. P. Kolmogorov, “Formation Conditions of the Igneous Complexes of the Yaman-Kasy and the Blyava Massive Sulfide Ore Deposits (Southern Urals),” in Metallogeny of Ancient and Modern Oceans-2001. History of Mineral Deposits and Evolution of Ore Formation (Inst. Mineral., Miass, 2001), pp. 240–247 [in Russian].

    Google Scholar 

  41. V. A. Simonov, A. S. Lapukhov, and S. V. Kovyazin, “Physicochemical Parameters of Acid Melts Associated with Massive Sulfide Ore Deposits in the Altai-Sayan Foldbelt,” in Geochemistry of Igneous Rocks (GEOKhI, Moscow, 2000), p. 130 [in Russian].

    Google Scholar 

  42. V. A. Simonov, A. P. Lisitsyn, Yu. A. Bogdanov, and K. G. Murav’ev, “Physicochemical Conditions of Modern Hydrothermal Ore-Forming Systems,” in Geology of Seas and Oceans (Moscow, 1997), p. 182 [in Russian].

  43. V. A. Simonov, V. V. Zaykov, and S. V. Kovyazin, “Paleogeodynamic Conditions of Development of Hydrothermal Systems of the Kyzyl-Tashtyg Deposit (Eastern Tuva),” in Metallogeny of Ancient and Modern Oceans-99. Ore Potential of Hydrothermal Systems (Inst. Mineral., Miass, 1999), pp. 16–23 [in Russian].

    Google Scholar 

  44. V. A. Simonov, V. V. Zaykov, and S. V. Kovyazin, “Specific Features of Trace Elements Distribution in Silicic Melts of the Yaman-Kasy Copper Massive Sulfide Deposit (Southern Urals),” in Metallogeny of Ancient and Modern Oceans-2002. Formation and Development of Mineral Deposits in Ophiolitic Zones (Inst. Mineral., Miass, 2002b), pp. 207–211 [in Russian].

    Google Scholar 

  45. A. V. Sobolev, “Melt Inclusions in Minerals As a Source of Principal Petrological Information,” Petrologiya 4(3), 228–239 (1996) [Petrology 4 (3), 209–220 (1996)].

    Google Scholar 

  46. A. V. Sobolev, “Origin and Evolution of Mantle-Derived Magmas,” Doctoral Dissertation in Geology and Mineralogy (Moscow, 1997).

  47. A. V. Sobolev and L. V. Danyushevsky, “Petrology and Geochemistry of Boninites from the North Termination of the Tonga Trench: Constraints on the Generation Conditions of Primary High-Ca Boninite Magmas,” J. Petrol. 35, 1183–1211 (1994).

    Google Scholar 

  48. A. V. Sobolev and A. B. Slutsky, “Composition and Crystallization Conditions of a Primary Melt of the Siberian Meimechites in Connection with General Problems of Ultramafic Magmas,” Geol. Geofiz. 25(12), 97–110 (1984).

    Google Scholar 

  49. L. V. Tauson, Geochemical Types and Ore Potential of Granitoids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  50. D. A. Vanko, W. Bach, S. Roberts, et al., “Fluid Inclusion Evidence for Subsurface Phase Separation and Variable Fluid Mixing Regimes beneath the Deep-Sea PACMANUS Hydrothermal Field, Manus Basin Back Arc Rift, Papua New Guinea,” J. Geophys. Res. 109(B032201), 1–14 (2004).

    Google Scholar 

  51. P. Ya. Yarosh, Diagenesis and Metamorphism of Massive Sulfide Ores in the Urals (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  52. V. V. Zaykov, Volcanism and Sulfide Black Smokers of Paleooceanic Margins with Reference to Massive Sulfide Ore Zones in the Urals and Siberia (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  53. V. V. Zaykov, V. V. Maslennikov, E. V. Zaykova, and R. J. Herrington, Ore Formation and Ore Facies Analysis of Massive Sulfide Deposits in the Uralian Paleoocean (Inst. Mineral., Miass, 2002) [in Russian].

    Google Scholar 

  54. V. V. Zaykov, T. N. Shadlun, V. V. Maslennikov, and N. S. Bortnikov, “Yaman-Kasy Massive Sulfide Deposit (Southern Urals)—the Ruins of an Ancient Black Smoker on the Uralian Paleoocean Floor,” Geol. Rudn. Mestorozhd. 37, 511–529 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Simonov.

Additional information

Original Russian Text © V.A. Simonov, S.V. Kovyazin, E.O. Terenya, V.V. Maslennikov, V.V. Zaykov, S.P. Maslennikova, 2006, published in Geologiya Rudnykh Mestorozhdenii, 2006, Vol. 48, No. 5, pp. 423–438.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonov, V.A., Kovyazin, S.V., Terenya, E.O. et al. Physicochemical parameters of magmatic and hydrothermal processes at the Yaman-Kasy massive sulfide deposit, the southern Urals. Geol. Ore Deposits 48, 369–383 (2006). https://doi.org/10.1134/S1075701506050035

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701506050035

Keywords

Navigation