Skip to main content
Log in

Specific structural features of crystalline regions in biodegradable composites of poly-3-hydroxybutyrate with chitosan

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry and X-ray diffraction at wide and small angles were used to examine the biodegradable composites of poly-3-hydroxybutyrate with chitosan, produced by mixing of these polymers in a rotor disperser at 150°C. Samples of individual polymers and composites with 80, 40, and 20 wt % poly- 3-hydroxybutyrate were studied. It was found that the presence of chitosan in the composites leads to a change in the crystallite size of poly-3-hydroxybutyrate and to an increase in the large period in this polymer. Mixing of poly-3-hydroxybutyrate with chitosan affects the structural rearrangement in crystalline regions of poly-3-hydroxybutyrate under a high-temperature treatment. The effect of a high-temperature treatment of the composites via alternation of melting–crystallization cycles in the nonisothermal mode, when a sample is heated and cooled at the same constant rate of 8 deg min–1 in the range from 20 to 200°C and is annealed at a temperature of 150°C, was analyzed. This analysis suggests that, in composites of this kind, the intermolecular interaction between the components is a factor strongly affecting the structure of the crystalline regions and the mechanism of their rearrangement in the course of annealing. The mechanism of this interaction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Misra, S., Ansari, T., and Valappil, S., Biomaterials, 2010, vol. 31, no. 10, pp. 2806–2815.

    Article  CAS  Google Scholar 

  2. Shibryaeva, L.S., Tertyshnaya, Yu.V, Pal’mina, D.D., and Levina, N.S., Sel’skokhoz. Mash. Tekhnol., 2015, no. 6, pp. 14–18.

    Google Scholar 

  3. Tertyshnaya, Yu.V. and Shibryaeva, L.S., Ekol. Prom–st. Ross., 2015, vol. 19, no. 8, pp. 20–25.

    Google Scholar 

  4. Tertyshnaya, Yu.V. and Shibryaeva, L.S., Polym. Sci., Ser. B, 2013, vol. 55, nos. 3–4, pp. 164–168.

    Article  CAS  Google Scholar 

  5. Tertyshnaya, Yu.V., Shibryaeva, L.S., and Popov, A.A., Russ. J. Phys. Chem. B, 2012, vol. 6, no. 1, pp. 38–42.

    Article  CAS  Google Scholar 

  6. Olkhov, A.A., Vlasov, S.V., Iordanskii, A.L., et al., J. Appl. Polym. Sci., 2003, vol. 90, no. 6, pp. 1471–1476.

    Article  CAS  Google Scholar 

  7. Rogovina, S.Z., Aleksanyan, K.V., Grachev, A.V., et al., Vestn. Volgogr. Gos. Univ., Ser. 10, Innov. Deyat., 2014, no. 6 (15), pp. 73–86.

    Article  Google Scholar 

  8. Rogovina, S., Aleksanyan, K., Prut, E., and Gorenberg, A., Eur. Polym. J., 2013, vol. 49, no. 1, pp. 194–202.

    Article  CAS  Google Scholar 

  9. Rogovina, S.Z., Aleksanyan, K.V., Novikov, D.D., et al., Polym. Sci., Ser. A, 2009, vol. 51, no. 5, pp. 554–562.

    Article  Google Scholar 

  10. Rogovina, S.Z., Alexanyan, Ch.V., and Prut, E.V., J. Appl. Polym. Sci., 2011, vol. 121, no. 3, pp. 1850–1859.

    Article  CAS  Google Scholar 

  11. Rogovina, S.Z., Vikhoreva, G.A., Akopova, T.A., et al., Mendeleev Commun., 1998, vol. 8, no. 3, pp. 107–109.

    Article  Google Scholar 

  12. Iordanskii, A.L., Rogovina, S.Z., Kosenko, R.Yu., et al., Dokl. Akad. Nauk, 2010, vol. 431, no. 4, pp. 500–502.

    Google Scholar 

  13. Rogovina, S.Z., Grachev, A.V., Aleksanyan, K.V., and Prut, E.V., Khim. Rastit. Syr’ya, 2010, no. 4, pp. 45–50.

    Google Scholar 

  14. Shishatskaya, E.I., Macromol. Symp., 2008, vol. 269, no. 1, pp. 65–81.

    Article  CAS  Google Scholar 

  15. Karpova, S.G., Iordanskii, A.L., Klenina, N.S., et al., Russ. J. Phys. Chem. B, 2013, vol. 7, no. 3, pp. 225–231.

    Article  CAS  Google Scholar 

  16. Smotrina, T.V., Smirnov, A.K., Vikhoreva, G.A., et al., Khim. Rastit. Syr’ya, 2004, no. 3, pp. 39–42.

    Google Scholar 

  17. Ol’khov, A.A., Vlasov, C.V., Shibryaeva, L.S., et al., Polym. Sci., Ser. A, 2000, vol. 42, no. 4, pp. 447–452.

    Google Scholar 

  18. Krivandin, A.V., Fatkullina, L.D., Shatalova, O.V., et al., Russ. J. Phys. Chem. B., 2013, vol. 7, no. 5, pp. 338–343.

    Article  CAS  Google Scholar 

  19. Krivandin, A.V., Shatalova, O.V., and Iordanskii, A.L., Polym. Sci. Ser. B, 1997, vol. 39, nos. 11, 12, pp. 394–397.

    Google Scholar 

  20. Gal’braikh, L.S., Soros. Obrazovat. Zh., 2001, vol. 7, no. 1, pp. 51–56.

    Google Scholar 

  21. Kenji Okuyama, Keiichi Noguchi, and Takashi Miyazawa, Macromolecules, 1997, vol. 30, no. 19, pp. 5849–5855.

    Article  Google Scholar 

  22. Rogovina, S.Z., Akopova, T.A., Vikhoreva, G.A., et al., Polym. Sci., Ser. A, 2000, vol. 42, no. 1, pp. 5–9.

    Google Scholar 

  23. Yokouchi, M., Chatani, Y., Tadokoro, H., et al., Polymer, 1973, vol. 14, no. 6, pp. 267–271.

    Article  CAS  Google Scholar 

  24. Krivandin, A.V., Shatalova, O.V., and Iordanskii, A.L., Polym. Sci. Ser. B, 1997, vol. 39, nos. 3, 4, pp. 102–105.

    Google Scholar 

  25. Hosemann, R. and Hindeleh, A.M., J. Macromol. Sci., Part B, 1995, vol. 34, no. 4, pp. 327–356.

    Article  Google Scholar 

  26. Tsvankin, D.Ya., Vysokomol. Soedin., 1964, vol. 6, no. 11, pp. 2078–2083.

    CAS  Google Scholar 

  27. Mogilevskaya, E.L., Akopova, T.A., Zhelenetskii, A.N., and Ozerin, A.N., Polym. Sci., Ser. A, 2006, vol. 48, no. 2, pp. 116–123).

    Article  Google Scholar 

  28. Shatalova, O.V., Aksenova, N.A., Solov’eva, A.B., et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2011, vol. 5, no. 3, pp. 454–459.

    Article  CAS  Google Scholar 

  29. Dechant, I.J., Danz, R., Kimmer, K., and Schmolke, W., Infrarotspektroskopische Polymeren, Berlin: Academie, 1972.

    Google Scholar 

  30. Akopova, T.A., Tverdofaznyi sintez, struktura, svoistva i perspektivy primeneniya materialov na osnove polisakharida khitozana (Solid-Phase Synthesis, Structure, Properties, and Application Prospects of Materials Based on Chitosan Polysaccharide), Doctoral Diss., Moscow, 2013.

    Google Scholar 

  31. Rogovina, C.Z., Soloveva, A.B., Aksenova, N.A., and Zharov, A.A., Polym. Sci., Ser. A, 2004, vol. 46, no. 3, pp. 238–241.

    Google Scholar 

  32. Chan, J.H. and Balke, S.T., Polym. Degrad. Stability, 1997, vol. 57, no. 1, pp. 135–149.

    Article  CAS  Google Scholar 

  33. Greco, A. and Maffezzoli, A., J. Therm. Anal. Calorim., 2003, vol. 72, no. 3, pp. 1167–1171.

    Article  CAS  Google Scholar 

  34. Bershtein, V.A. and Egorov, V.M., Differential Scanning Calorimetry of Polymers: Physics, Chemistry, Analysis, Technology, NewYork: Ellis Harwood, 1994.

    Google Scholar 

  35. Wunderlich, B., Macromolecular Physics, Crystal Melting, vol. 3, New York: Acad. Press., 1980.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Shibryaeva.

Additional information

Original Russian Text © L.S. Shibryaeva, O.V. Shatalova, A.V. Krivandin, Yu.V. Tertyshnaya, Yu.V. Solovova, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 9, pp. 1187−1198.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibryaeva, L.S., Shatalova, O.V., Krivandin, A.V. et al. Specific structural features of crystalline regions in biodegradable composites of poly-3-hydroxybutyrate with chitosan. Russ J Appl Chem 90, 1443–1453 (2017). https://doi.org/10.1134/S1070427217090117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427217090117

Navigation