Skip to main content
Log in

Surface Wave Tomography of the Arctic from Rayleigh and Love Wave Group Velocity Dispersion Data

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The results of studying the deep structure of the Earth’s crust and upper mantle of the Arctic from surface wave data are presented. For this purpose, based on the frequency-time analysis procedure, a representative dataset of group velocity dispersion curves of Rayleigh and Love waves (1555 and 1265 paths, respectively) in the period range from 10 to 250 s is obtained. With the use of a two-dimensional tomography technique for a spherical surface, group velocity distributions are calculated at separate periods. Overall, 18 maps for each type of surface waves are constructed and the horizontal resolution of the mapping is estimated. For four tectonically different regions of the Arctic, the dispersion curves calculated from the tomography results are inverted to the velocity sections of SV- and SH-waves. Based on the obtained distributions, the main large-scale features are analyzed in the deep structure of the Earth’s crust and upper mantle of the Arctic, and the revealed velocity irregularities are correlated to various geological structures. The results of the study are of considerable interest for further constructing the three-dimensional model of the shear wave velocity distribution and for studying the anisotropic properties of the upper mantle of the Arctic, as well as for building the geodynamical models of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Allen, R.M., Nolet, G., Morgan, W.J., Vogfjörd, K., Nettles, M., Ekström, G., Bergsson, B.H., Erlendsson, P., Foulger, G.G., Jakobsdóttir, S., Julian, B.R., Pritchard, M., Ragnarsson, S., and Stefánsson, R., Plume-driven plumbing and crustal formation in Iceland, J. Geophys. Res., 2002, vol. 107, no. B8, 2163. https://doi.org/10.1029/2001JB000584

    Article  Google Scholar 

  2. Andersen, O.B., Knudsen, P., and Berry, P., The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J. Geod., 2010, vol. 84, no. 3, pp. 191–199. https://doi.org/10.1007/s00190-009-0355-9

    Article  Google Scholar 

  3. Artemieva, I.M. and Thybo, H., EUNAseis: a sesmic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region, Tectonophysics, 2013, vol. 609, pp. 97–153. https://doi.org/10.1016/j.tecto.2013.08.004

  4. Avetisov, G.P., Geodynamics of the zone of continental continuation of Mid-Arctic earthquakes belt (Laptev Sea), Phys. Earth Planet. Inter., 1999, vol. 114, pp. 59–70.

    Article  Google Scholar 

  5. Bijwaard, H., Spakman, W., and Engdahl, E.R., Closing the gap between regional and global travel time tomography, J. Geophys. Res., 1998, vol. 103, no. B12, pp. 30055–30078.

    Article  Google Scholar 

  6. Bruneton, M., Pedersen, H.A., Farra, V., Arndt, N.T., Vacher, P., et al., Complex lithospheric structure under the central Baltic Shield from surface wave tomography, J. Geophys. Res., 2004, vol. 109, B10303. https://doi.org/10.1029/2003JB002947

    Article  Google Scholar 

  7. Chen, C.-W., Rondenay, S., Weeraratne, D.S., and Snyder, D.B., New constraints on the upper mantle structure of the Slave craton from Rayleigh wave inversion, Geophys. Res. Lett., 2007, vol. 34, L10301. https://doi.org/10.1029/2007GL029535

    Article  Google Scholar 

  8. Darbyshire, F.A., Crustal structure across the Canadian High Arctic region from teleseismic receiver function analysis, Geophys. J. Int., 2003, vol. 152, pp. 273–391.

    Article  Google Scholar 

  9. Darbyshire, F.A., Larsen, T.B., Mosegaard, K., Dahl-Jensen, T., Gudmundsson, O., Bah, T., Gregersen, S., Pedersen, H.A., and Hanka, W., A first detailed look at the Greenland lithosphere and upper mantle using Rayleigh wave tomography, Geophys. J. Int., 2004, vol. 158, pp. 267–286. https://doi.org/10.1111/j.1365-246X.2004.02316.x

    Article  Google Scholar 

  10. Darbyshire, F.A., Eaton, D.W., and Bastow, I.D., Seismic imaging of the lithosphere beneath Hudson Bay: episodic growth of the Laurentian mantle keel, Earth Planet. Sci. Lett., 2013, vol. 373, pp. 179–193. https://doi.org/10.1016/j.epsl.2013.05.002

    Article  Google Scholar 

  11. DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 1994, vol. 21, pp. 2191–2194.

    Article  Google Scholar 

  12. Drachev, S.S., Fold belts and sedimentary basins of the Eurasian Arctic, Arktos, 2016, vol. 2, article no. 21. https://doi.org/10.1007/s41063-015-0014-8

    Article  Google Scholar 

  13. Dziewonski, A.M. and Anderson, D.L., Preliminary Reference Earth Model, Phys. Earth Planet. Inter., 1981, vol. 25, pp. 297–356.

    Article  Google Scholar 

  14. Eksröm, G., A global model of Love and Rayleigh surface wave dispersion and anisotropy, 25–250 s, Geophys. J. Int., 2011, vol. 187, pp. 1668–1686. https://doi.org/10.1111/j.1365-246X.2011.05225.x

    Article  Google Scholar 

  15. Gaina, C., Medvedev, S., Torsvik, T.H., Koulakov, I., and Werner, S.C., 4D Arctic: a glimpse into the structure and evolution of the Arctic in the light of new geophysical maps, plate tectonics and tomographic models, Surv. Geophys., 2014, vol. 35, pp. 1095–1122. https://doi.org/10.1007/s10712-013-9254-y

    Article  Google Scholar 

  16. Grad, M., Tiira, T., Olsson, S., and Komminaho, K., Seismic lithosphere–asthenosphere boundary beneath the Baltic Shield, GFF, 2014, vol. 136, no. 1, pp. 581–598. https://doi.org/10.1080/11035897.2014.959042

    Article  Google Scholar 

  17. Gramberg, I.S., Verba, V.V., Verba, M.L., and Kos’ko M.K., Sedimentary cover thickness map—sedimentary basins in the Arctic, Polarforschung, 1999, vol. 69, pp. 243–249.

    Google Scholar 

  18. Imaeva, L.P. and Kolodeznikov, I.I., Eds., Seismotektonika severo-vostochnogo sektora Rossiiskoi Arktiki (Seismotectonics of the Northeastern Sector of the Russian Arctic), Novosibirsk: SO RAN, 2017.

  19. Jakovlev, A.V., Bushenkova, N.A., Koulakov, I.Yu., and Dobretsov, N.L., Structure of the upper mantle in the Circum-Arctic region from regional seismic tomography, Russ. Geol. Geophys., 2012, vol. 53, no. 10, pp. 963–971.

    Article  Google Scholar 

  20. Jokat, W. and Schmidt-Aursch, M.C., Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean, Geophys. J. Int., 2007, vol. 168, pp. 983–998. https://doi.org/10.1111/j.1365-246X.2006.03278.x

    Article  Google Scholar 

  21. Kenyon, S., Forsberg, R., and Coakley, B., New gravity field for the Arctic, Eos Trans. AGU, 2008, vol. 89, no. 32, pp. 289–290. https://doi.org/10.1029/2008EO320002

    Article  Google Scholar 

  22. Kumar, P., Kind, R., Hanka, W., Wylegalla, K., Reigber, Ch., Yuan, X., Woelbern, I., Schwintzer, P., Fleming, K., Dahl-Jensen, T., Larsen, T.B., Schweitzer, J., Priestley, K., Gudmundsson, O., and Wolf, D., The lithosphere-asthenosphere boundary in the North-West Atlantic region, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 249–257. https://doi.org/10.1016/j.epsl.2005.05.029

    Article  Google Scholar 

  23. Laske, G., Masters, G., Ma, Z., and Pasyanos, M., Update on CRUST1.0—A 1-degree global model of Earth’s crust, Geophys. Res. Abstr., 2013, vol. 15, Abstr. EGU 2013-2658.

    Google Scholar 

  24. Lebedeva-Ivanova, N.N., Zamansky, Y.Ya., and Lan-ginen, A.E., Seismic profiling across the Mendeleev Ridge at 82° N: evidence of continental crust, Geophys. J. Int., 2006, vol. 165, pp. 527–544. https://doi.org/10.1111/j.1365-246X.2006.02859.x

    Article  Google Scholar 

  25. Levshin, A.L., Yanovskaya, T.B., Lander, A.V., Bukchin, B.G., Barmin, M.P., Ratnikova L.I., and Its, Ye.N., Poverkhnostnye seismicheskie volny v gorizontal’no-neodnorodnoi Zemle (Surface Seismic Waves in a Horizontally Inhomogeneous Earth), Moscow: Nauka, 1986.

  26. Levshin, A.L., Ritzwoller, M.H., Barmin, M.P., Villasenor, A., and Padgett, C.A., New constraints on the arctic crust and uppermost mantle: surface wave group velocities, Pn, and Sn, Phys. Earth Planet. Inter., 2001, vol. 123, nos. 2–4, pp. 185–204.

    Article  Google Scholar 

  27. Levshin, A.L., Schweitzer, J., Weidle, C., Shapiro, N.M., and Ritzwoller, M.H., Surface wave tomography of the Barents Sea and surrounding regions, Geophys. J. Int., 2007, vol. 170, pp. 441–459. https://doi.org/10.1111/j.1365-246X.2006.03285.x

    Article  Google Scholar 

  28. Olsson, S., Roberts, R.G., and Böðvarsson, R., Analysis of waves converted from S to P in the upper mantle beneath the Baltic Shield, Earth Planet. Sci. Lett., 2007, vol. 257, nos. 1–2, pp. 37–46.

    Article  Google Scholar 

  29. Pedersen, H.A., Debayle, E., Maupin, V., and the POLENET/LAPNET Collab., Strong lateral variations of lithospheric mantle beneath cratons–example from the Baltic shield, Earth Planet. Sci. Lett., 2013, vol. 383, pp. 164–172. https://doi.org/10.1016/j.epsl.2013.09.024

    Article  Google Scholar 

  30. Pilidou, S., Priestley, K., Gudmundsson, O., and Debayle, E., Upper mantle S-wave speed heterogeneity beneath the North Atlantic from regional surface wave tomography: the Iceland and Azores plumes, Geophys. J. Int., 2004, vol. 159, pp. 1057–1076. https://doi.org/10.1111/j.1365-246X.2004.02462.x

    Article  Google Scholar 

  31. Pilidou, S., Priestley, K., Debayle, E., and Gudmundsson, O., Rayleigh wave tomography in the North Atlantic: high resolution images of the Iceland, Azores and Eifel mantle plumes, Lithos. 2005, vol. 79, pp. 453–474. https://doi.org/10.1016/j.lithos.2004.09.012

    Article  Google Scholar 

  32. Rickers, F., Fichter, A., and Trampert, J., The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion, Earth Planet. Sci. Lett., 2013, vol. 367, pp. 39–51. https://doi.org/10.1016/j.epsl.2013.02.022

    Article  Google Scholar 

  33. Ritzwoller, M.H. and Levshin, A.L., Eurasian surface wave tomography: group velocities, J. Geophys. Res., 1998, vol. 103, pp. 4839–4878.

    Article  Google Scholar 

  34. Schaeffer, A.J. and Lebedev, S., Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 2013, vol. 194, pp. 417–449. https://doi.org/10.1093/gji/ggt095

    Article  Google Scholar 

  35. Schilling, J.G., Kingsley, R., Fontignie, D., Poreda, R., and Xue, S., Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: a He–Pb–Nd–Sr isotope tracer study of basalts from the Kolbeinsey, Mohns and Knipovich Ridges, J. Geophys. Res., 1999, vol. 10, no. 5, pp. 10543–10569.

    Article  Google Scholar 

  36. Shapiro, N.M. and Ritzwoller, M.H., Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle, Geophys. J. Int., 2002, vol. 151, pp. 88–105.

    Article  Google Scholar 

  37. Verhoef, J., Roest, W.R., Macnab, R., Arkani-Hamed, J. and Project Team, Magnetic Anomalies of the Arctic and North Atlantic Oceans and Adjacent Land Areas. Geological Survey of Canada, Open File Report 3125a, 1996

  38. Yanovskaya, T.B., Development of the methods for solving the problems of surface-wave tomography based on the Backus–Gilbert method, Vychislit. Seismol., vol. 32, Moscow: GEOS, 2001, pp. 11–26

    Google Scholar 

  39. Yanovskaya, T.B. Poverkhnostno-volnovaya tomografiya v seysmologicheskikh issledovaniyakh (Surface Wave Tomography in Seismological Studies), St.-Petersburg: Nauka, 2015.

  40. Yanovskaya, T.B. and Kozhevnikov, V.M., 3D S-wave velocity pattern in the upper mantle beneath the continent of Asia from Rayleigh wave data, Phys. Earth Planet. Inter., 2003, vol. 138, pp. 263–278.

    Article  Google Scholar 

  41. Yanovskaya, T.B., Antonova, L.M., Kozhevnikov, V.M., Lateral variations of the upper mantle structure in Eurasia from group velocities of surface waves, Phys. Earth Planet. Inter., 2000, vol. 122, pp. 19–32.

    Article  Google Scholar 

  42. Zhou, Y., Nolet, G., Dahlen, F.A., and Laske, G., Global upper-mantle structure from finite-frequency surface-wave tomography, J. Geophys. Res., 2006, vol. 111, B04304. https://doi.org/10.1029/2005JB003677

    Google Scholar 

  43. Zonenshain, L.P. and Natapov, L.M., Tectonic history of the Arctic, in Aktual’nye problemy tektoniki (Current Issues in Tectonics), Moscow: Nauka, 1987, pp. 31–57.

  44. Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.M., Tektonika litosfernykh plit territorii SSSR (Tectonics of Lithospheric Plates in the USSR Territory), Moscow: Nedra, 1990, Book 2.

Download references

ACKNOWLEDGMENTS

I thank Prof. T.B. Yanovskaya (St. Petersburg State University) for providing the software, and Prof. A.L. Levshin (University of Colorado, Boulder, United States) and Dr. V.M. Kozhevnikov, (Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences) for their valuable advice and attention to the work.

Funding

This work was supported by the Russian Science Foundation, project no. 17-77-10037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Seredkina.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seredkina, A.I. Surface Wave Tomography of the Arctic from Rayleigh and Love Wave Group Velocity Dispersion Data. Izv., Phys. Solid Earth 55, 439–450 (2019). https://doi.org/10.1134/S106935131903008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106935131903008X

Keywords:

Navigation