Skip to main content
Log in

Global and Regional Electricity Components in Undisturbed Midlatitude Lower Atmosphere

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The physical mechanisms determining the variability of the vertical profiles of electrical conductivity, space charge density, and electric field in the undisturbed midlatitude lower atmosphere are discussed. The influence of the global and local mesoscale processes on the variability of electrical conductivity and the main component of the atmospheric electric field is estimated. The sunrise effect is studied, estimates are obtained for the charge accumulation rate in the column of the lower atmosphere and the corresponding growth rate of the field strength close to the ground. It is shown that the increase in the average charge density is mainly due to the breakdown of the stable stratification of the atmospheric boundary layer and transformation of the vertical profile of electrical conductivity following the convective mixing of a radon and its daughter products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimov, S.V., Global electric circuit and lower atmospheric electricity. ICAE 2003: Proc. 12th International Conference on Atmospheric Electricity, June 9–13, 2003, Versailles, France, ONERA, 2003, pp. 693–696.

    Google Scholar 

  • Anisimov, S.V. and Shikhova, N.M., Variability of the undisturbed aeroelectric field at the middle latitudes, Geofiz. Issled., 2008, no. 3, pp. 25–38.

    Google Scholar 

  • Anisimov, S.V., Morghounov, V.A., and Troitskaya, V.A., Substorms of potential gradient of the atmospheric electric field, Publ. Inst. Geophys., Pol. Acad. Sci., 1991, vol. D-35, no. 238, pp. 77–82.

    Google Scholar 

  • Anisimov, S.V., Galichenko, S.V., and Shikhova, N.M., Formation of Electrically Active Layers in the Atmosphere with Temperature Inversion, Izv., Atmos. Oceanic Phys., 2012, vol. 48, no. 4, pp. 391–400.

    Article  Google Scholar 

  • Anisimov, S.V., Galichenko, S.V., Shikhova, N.M., and Afinogenov, K.V., Electricity of the convective atmospheric boundary layer: field observations and numerical simulation, Izv., Atmos. Oceanic Phys., 2014, vol. 50, no. 4, pp. 1–9.

    Article  Google Scholar 

  • Anisimov, S.V., Galichenko, S.V., Afinogenov, K.V., Makrushin, A.P., and Shikhova, N.M., Radon volumetric activity and ion production in the undisturbed lower atmosphere: ground-based observations and numerical modeling, Izv., Phys. Solid Earth, 2017a, no. 1, pp. 147–161.

    Article  Google Scholar 

  • Anisimov, S.V., Galichenko, S.V., and Mareev, E.A., Electrodynamic properties and height of atmospheric convective boundary layer, Atmos. Res., 2017b, vol. 194, pp. 119–129.

    Article  Google Scholar 

  • Chambers, S., Williams, A.G., Zahorowski, W., Griffiths, A., and Crawford, J., Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere, Tellus, 2011, vol. 63B, pp. 843–859.

    Article  Google Scholar 

  • Chetaev, D.N., Direktsionnyi analiz magnitotelluricheskikh nablyudenii (Directional Analysis of Magnetotelluric Observations), Moscow: Nauka, 1985.

    Google Scholar 

  • Conen, F. and Robertson, L.B., Latitudinal distribution of radon-222 flux from continents, Tellus, 2002, vol. 54B, pp. 127–133.

    Article  Google Scholar 

  • Gong, S.L., Barrie, L.A., Blanchet, J.-P., von Salzen, K., Lohmann, U., Lesins, G., Spacek, L., Zhang, L.M., Girard, E., Lin, H., Leaitch, R., Leighton, H., Chylek, P., and Huang, P., Canadian aerosol module: a size segregated simulation of atmospheric aerosol processes for climate and air quality models: 1. Module development, J. Geophys. Res., 2003, vol. 108, no. no. D1, p. 4007. doi 10.1029/2001JD002002

    Article  Google Scholar 

  • Harrison, R.G., The Carnegie curve, Surv. Geophys., 2013, vol. 34, no. 2, pp. 209–232.

    Article  Google Scholar 

  • Hõrrak, U., Salm, J., and Tammet, H., Statistical characterization of ion mobility spectra at Tahkuse Observatory: classification of air ions, J. Geophys. Res., 2000, vol. 105, pp. 9291–9302.

    Article  Google Scholar 

  • Israelsson, S. and Tammet, H., Variation of fair-weather atmospheric electricity at Marsta Observatory, Sweden, 1993–1998, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1693–1703.

    Article  Google Scholar 

  • Kamsali, N., Pawar, S.D., Murugavel, P., and Gopalakrishnan, V., Estimation of small ion concentration near the Earth’s surface, J. Atmos. Sol.–Terr. Phys., 2011, vol. 73, pp. 2345–2351.

    Article  Google Scholar 

  • Kastelis, N. and Kourtidis, K., Characteristics of the atmospheric electric field and correlation with CO2 at a rural site in Southern Balkans, Earth, Planets and Space, 2016, vol. 68, no. 3. doi 10.1186/s40623-016-0379-3

    Google Scholar 

  • Kipling, Z., Stier, P., Johnson, C.E., Mann, G.W., Bellouin, N., Bauer, S.E., Bergman, T., Chin, M., Diehl, T., Ghan, S.J., Iversen, T., Kirkevag, A., Kokkola, H., Liu, X., Luo, G., et al., What controls the vertical distribution of aerosols? Relationships between process sensitivity in Had-GEM3-UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 2016, vol. 16, pp. 2221–2241.

    Article  Google Scholar 

  • Liu, S. and Liang, X.-Z., Observed diurnal cycle climatology of planetary boundary layer height, J. Clim., 2010, vol. 23, pp. 5790–5809.

    Article  Google Scholar 

  • Liu, X., Easter, R.C., Ghan, S.J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A.M.L., et al., Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5, Geosci. Model Dev., 2012, vol. 5, pp. 709–739.

    Article  Google Scholar 

  • López-Yglesias, X. and Flagan, R.C., Population balances of micron-sized aerosols in a bipolar ion environment, Aerosol. Sci. Tech, 2013a, vol. 47, pp. 681–687.

    Article  Google Scholar 

  • López-Yglesias, X. and Flagan, R.C., Ion-aerosol flux coefficient and the steady-state charge distributuion of aerosols in a bipolar ion environment, Aerosol. Sci. Tech, 2013b, vol. 47, pp. 688–704.

    Article  Google Scholar 

  • Malakhov, S.G., Bakulin, V.N., Dmitrieva, G.V., Kirichenko, L.V., Ssissigina, T.I., and Starikov, B.G., Diurnal variations of radon and thoron decay product concentrations in the surface layer of the atmosphere and their washout by precipitations, Tellus, 1966, vol. 2, pp. 643–654.

    Google Scholar 

  • Märcz, F. and Harrison, R.G., Long-term changes in atmospheric electrical parameters observed at Nagycenk (Hungary) and the UK observatories at Eskdalemuir and Kew, Ann. Geophys., 2003, vol. 21, pp. 2193–2200.

    Article  Google Scholar 

  • Mareev, E.A. and Volodin, E.M., Variation of the global electric circuit and ionospheric potential in a general circulation model, Geophys. Rev. Lett., 2014, vol. 41, pp. 9009–9016.

    Article  Google Scholar 

  • Markson, R., Ruhnke, L., and Williams, E.R., Global scale comparison of simultaneous ionospheric potential measurements, Atmos. Res., 1999, vol. 51, pp. 315–321.

    Article  Google Scholar 

  • Marshall, T.C., Rust, W.D., Stolzenburg, M., Roeder, W.P., and Krehbiel, P.R., A study of enhanced fair-weather electric fields occurring soon after sunrise, J. Geophys. Res., 1999, vol. 104, pp. 24455–24469.

    Article  Google Scholar 

  • Nagato, K. and Ogawa, T., Evolution of tropospheric ions observed by an ion mobility spectrometer with a drift tube, J. Geophys. Res., 1998, vol. 103, pp. 13917–13925.

    Article  Google Scholar 

  • Parkinson, W.C. and Torrenson, O.W., The diurnal variation the electrical potential of the atmosphere over the oceans, Compt. Rend de l’Assemblée de Stockholm, 1930, IUGG Sect. Terrest. Magn. Electr. Bull., 1931, vol. 8, pp. 340–345.

    Google Scholar 

  • Ragini, N., Shashikumar, T.S., Chandrashekara, M.S., Sannappa, J., and Paramesh, L., Temporal and vertical variations of atmospheric electrical conductivity related to radon and its progeny concentrations at Mysore, Indian J. Radio Space Phys, 2008, vol. 37, pp. 264–271.

    Google Scholar 

  • Rannik, Ü., Zhou, L., Zhou, P., Gierens, R., Mammarella, I., Sogachev, A., and Boy, M., Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition, Atmos. Chem. Phys., 2016, vol. 16, pp. 3145–3160.

    Article  Google Scholar 

  • Rycroft, M.J., Electrical processes coupling the atmosphere and ionosphere: an overview, J. Atmos. Sol.-Terr. Phys, 2006, vol. 68, pp. 445–456.

    Article  Google Scholar 

  • Seidel, D.J., Ao, C.O., and Li, K., Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis, J. Geophys. Res., 2010, vol. 115, D16113. doi 10.1029/2009JD013680

    Article  Google Scholar 

  • Siingh, D., Gopalakrishnan, V., Singh, R.P., Kamra, A.K., Singh, S., Pant, V., Singh, R., and Singh, A.K., The atmospheric global electrical circuit: an overview, Atmos. Res., 2007, vol. 84, pp. 91–110.

    Article  Google Scholar 

  • Slyunyaev, N.N., Mareev, E.A., and Zhidkov, A.A., On the variation of the ionospheric potential due to large-scale radioactivity enhancement and solar activity, J. Geophys. Res. Space. Phys, 2015, vol. 120, pp. 7060–7082.

    Article  Google Scholar 

  • Tacza, J., Raulin, J., Macotela, E., Norabuena, E., Fernandez, G., Correia, E., Rycroft, M.J., and Harrison, R.G., A new South American network to study the atmospheric electric field and its variations related to geophysical phenomena, J. Atmos. Sol.-Terr. Phys., 2014, vol. 120, pp. 70–79.

    Article  Google Scholar 

  • Troitskaya, V.A., Morgunov, V.A., and Anisimov, S.V., Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electrical Interaction between Geospheric Shells), Moscow: OIFZ RAN, 2000, pp. 5–11.

    Google Scholar 

  • Whipple, F.J.W. and Scrase, F.J., Point discharge in the electric field of the Earth, Geophys. Mem. (Lond.), 1936, vol. VII, no. 68

    Google Scholar 

  • Wilson, C.T.R., Investigations on lightning discharges and the electric field of thunderstorms, Phil. Trans. A, 1920, vol. 221, pp. 73–115.

    Article  Google Scholar 

  • Yaniv, R., Yair, Y., Price, C., Mkrtchyan, H., Lynn, B., and Reymers, A., Ground-based measurements of the vertical E-field in mountainous regions and the “Austausch” effect, Atmos. Res., 2017, vol. 189, pp. 127–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Galichenko.

Additional information

Original Russian Text © S.V. Anisimov, S.V. Galichenko, K.V. Aphinogenov, A.A. Prokhorchuk, 2018, published in Fizika Zemli, 2018, No. 5, pp. 104–114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, S.V., Galichenko, S.V., Aphinogenov, K.V. et al. Global and Regional Electricity Components in Undisturbed Midlatitude Lower Atmosphere. Izv., Phys. Solid Earth 54, 764–774 (2018). https://doi.org/10.1134/S1069351318050038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351318050038

Keywords

Navigation