Skip to main content
Log in

Changes in the Metabolism of Sphingomyelin and Ceramide in the Brain Structures and Spinal Cord of Transgenic Mice (FUS(1-359)) Modeling Amyotrophic Lateral Sclerosis

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Changes in the expression of genes for enzymes of sphingolipid metabolism in transgenic FUS mice (FUS (1-359)) simulating amyotrophic lateral sclerosis (ALS) were found. The profiles of molecular species of sphingomyelins (SM) and ceramides (CER) in the structure of the brain and in the spinal cord were analyzed. During the development of ALS, changes in the spectrum of molecular types of CER were noted only in the spinal cord, where almost all CER decreased in relation to the control after two and three months of the course of the disease. After four months of the development of the pathology, an increase in the expression of the acid ceramidase gene was observed, as a result of which sphingosine can be formed, which has pronounced proapoptotic properties. Analysis of gene expression of CER and galactosylceramide (GalCER) metabolism enzymes indicates the possibility of GalCER functioning as a source for maintaining CER levels at the terminal stage of ALS. Thus, the metabolism of sphingolipids is a promising field of study of the processes associated with ALS, both in the context of the search for potential diagnostic markers and effective drugs, and for explaining the pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Talbott, E.O., Malek, A.M., and Lacomis, D., Handb. Clin. Neurol., 2016, vol. 138, pp. 225–238. https://doi.org/10.1016/B978-0-12-802973-2.00013-6

    Article  CAS  PubMed  Google Scholar 

  2. Arthur, K.C., Calvo, A., Price, T.R., Geiger, J.T., Chio, A., and Traynor, B.J., Nat. Commun., 2016, vol. 7, p. 12408. https://doi.org/10.1038/ncomms12408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chia, R., Chiò, A., and Traynor, B.J., Lancet Neurol., 2018, vol. 17, pp. 94–102. https://doi.org/10.1016/S1474-4422(17)30401-5

    Article  CAS  PubMed  Google Scholar 

  4. Zou, Z.Y., Zhou, Z.R., Che, C.H., Liu, C.Y., He, R.L., and Huang, H.P.J., Neurol. Neurosurg. Psychiatry, 2017, vol. 88, pp. 540–549. https://doi.org/10.1136/jnnp-2016-315018

    Article  Google Scholar 

  5. Shi, P., Gal, J., Kwinter, D.M., Liu, X., and Zhu, H., Biochim. Biophys. Acta, 2010, vol. 1802, pp. 45–51. https://doi.org/10.1016/j.bbadis.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  6. Peters, O.M., Ghasemi, M., and Brown, R.H., Jr., J. Clin. Invest., 2015, vol. 125, pp. 1767–1779. https://doi.org/10.1172/JCI71601

    Article  PubMed  PubMed Central  Google Scholar 

  7. Van Damme, P., Dewil м., robberecht w., van den bosch l, Neurodegener. Dis., 2005, vol. 2, pp. 147–159. https://doi.org/10.1159/000089620

    Article  CAS  PubMed  Google Scholar 

  8. Chitnis, T. and Weiner, H.L., J. Clin. Invest., 2017, vol. 127, pp. 3577–3587. https://doi.org/10.1172/JCI90609

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E.M., Logroscino, G., Robberecht, W., Shaw, P.J., Simmons, Z., and Berg, L.H., Nat. Rev. Dis. Primers, 2017, vol. 3, p. 17085. https://doi.org/10.1038/nrdp.2017.85

    Article  PubMed  Google Scholar 

  10. van Damme, P., Robberecht, W., and Van Den, BoschL., Dis. Model Mech., 2017, vol. 10, pp. 537–549. https://doi.org/10.1242/dmm.029058

  11. Van Den, BoschL., J. Biomed. Biotechnol., 2011, vol. 2011, p. 348765. https://doi.org/10.1155/2011/348765

    Article  CAS  Google Scholar 

  12. Naumann, M., Pal, A., Goswami, A., Lojewski, X., Japtok, J., Vehlow, A., Naujock, M., Gunther, R., Jin, M., Stanslowsky, N., Reinhardt, P., Sterneckert, J., Frickenhaus, M., Pan-Montojo, F., Storkebaum, E., Poser, I., Freischmidt, A., Weishaupt, J.H., Holzmann, K., Troost, D., Ludolph, A.C., Boeckers, T.M., Liebau, S., Petri, S., Cordes, N., Hyman, A.A., Wegner, F., Grill, S.W., Weis, J., Storch, A., and Hermann, A., Nat. Commun., 2018, vol. 9, p. 335. https://doi.org/10.1038/s41467-017-02299-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vance, C., Rogelj, B., Hortobagyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., Ganesalingam, J., Williams, K.L., Tripathi, V., Al-Saraj, S., Al-Chalabi, A., Leigh, P.N., Blair, I.P., Nicholson, G., de Belleroche, J., Gallo, J.M., Miller, C.C., and Shaw, C.E., Science, 2009, vol. 323, pp. 1208–1211. https://doi.org/10.1126/science.1165942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwiatkowski, T.J., Jr., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., Valdmanis, P., Rouleau, G.A., Hosler, B.A., Cortelli, P., de Jong, P.J., Yoshinaga, Y., Haines, J.L., Pericak-Vance, M.A., Yan, J., Ticozzi, N., Siddique, T., McKenna-Yasek, D., Sapp, P.C., Horvitz, H.R., Landers, J.E., and Brown, R.H., Jr., Science, 2009, vol. 323, pp. 1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  15. Conlon, E.G. and Manley, J.L., Genes Dev., 2017, vol. 31, pp. 1509–1528. https://doi.org/10.1101/gad.304055.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Skvortsova, V.I., Mal’tsev, A.V., Grigor’ev, V.V., Ovchinnikov, R.K., Roman, A.Yu., Efimova, A.D., and Kovrazhkina, E.A., Mol. Biol. (Moscow), 2017, vol. 51, pp. 341–351. https://doi.org/10.7868/S0026898417020094

    Article  Google Scholar 

  17. Arima, H., Omura, T., Hayasaka, T., Masaki, N., Hanada, M., Xu, D., Banno, T., Kobayashi, K., Takeuchi, H., Kadomatsu, K., Matsuyama, Y., and Setou, M., Neuroscience, 2015, vol. 297, pp. 127–136. https://doi.org/10.1016/j.neuroscience.2015.03.060

    Article  CAS  PubMed  Google Scholar 

  18. Fitzgerald, K.C., O’Reilly, E.J., Falcone, G.J., McCullough, M.L., Park, Y., Kolonel, L.N., and Ascherio, A., JAMA Neurol., 2014, vol. 71, pp. 1102–1110. https://doi.org/10.1001/jamaneurol.2014.1214

    Article  PubMed  PubMed Central  Google Scholar 

  19. Blasco, H., Veyrat-Durebex, C., Bocca, C., Patin, F., Vourc’h, P., Kouassi Nzoughet, J., Lenaers, G., Andres, C.R., Simard, G., Corcia, P., and Reynier, P., Sci. Rep., 2017, vol. 7, p. 17652. https://doi.org/10.1038/s41598-017-17389-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dodge, J.C., Treleaven, C.M., Pacheco, J., Cooper, S., Bao, C., Abraham, M., Cromwell, M., Sardi, S.P., Chuang, W.L., Sidman, R.L., Cheng, S.H., and Shihabuddin, L.S., Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, pp. 8100–8105. https://doi.org/10.1042/bst0320144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Echten-Deckert, G. and Herget, T., Biochim. Biophys. Acta, 2006, vol. 1758, pp. 1978–1994. https://doi.org/10.1016/j.bbamem.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  22. Piccinini, M., Scandroglio, F., Prioni, S., Buccinnà, B., Loberto, N., Aureli, M., Chigorno, V., Lupino, E., DeMarco, G., Lomartire, A., Rinaudo, M.T., Sonnino, S., and Prinetti, A., Mol. Neurobiol., 2010, vol. 41, pp. 314–340. https://doi.org/10.1007/s12035-009-8096-6

    Article  CAS  PubMed  Google Scholar 

  23. Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 139–150. https://doi.org/10.1038/nrm2329

    Article  CAS  PubMed  Google Scholar 

  24. Hannun, Y.A. and Obeid, L.M., Nat. Rev. Mol. Cell Biol., 2018, vol. 19, pp. 175–191. https://doi.org/10.1038/nrm.2017.107

    Article  CAS  PubMed  Google Scholar 

  25. Nganga, R., Oleinik, N., and Ogretmen, B., Adv. Cancer Res., 2018, vol. 140, pp. 1–25. https://doi.org/10.1016/bs.acr.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  26. Chaurasia, B. and Summers, S.A., Annu. Rev. Physiol., 2021, vol. 83, pp. 303–330. https://doi.org/10.1146/annurev-physiol-031620-093815

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X., Matsuda, M., Yaegashi, N., Nabe, T., and Kitatani, K., Cells, 2020, vol. 9, p. 627. https://doi.org/10.3390/cells9030627

    Article  CAS  PubMed Central  Google Scholar 

  28. Mullen, T.D., Hannun, Y.A., and Obeid, L.M., Biochem. J., 2012, vol. 441, pp. 789–802. https://doi.org/10.1042/bj20111626

    Article  CAS  PubMed  Google Scholar 

  29. Zelnik, I.D., Ventura, A.E., Kim, J.L., Silva, L.C., and Futerman, A.H., Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2020, vol. 1865, p. 158489. https://doi.org/10.1016/j.bbalip.2019.06.015

    Article  CAS  Google Scholar 

  30. Futerman, A.H. and Hannun, Y.A., EMBO Rep., vol. 5, pp. 777–782. https://doi.org/10.1038/sj.embor.7400208

  31. Cutler, R.G., Pedersen, W.A., Camandola, S., Rothstein, J.D., and Mattson, M.P., Ann. Neurol., 2002, vol. 52, pp. 448–457.

    Article  CAS  PubMed  Google Scholar 

  32. Potenza, R.L., De Simone, R., Armida, M., Mazziotti, V., Pèzzola, A., Popoli, P., and Minghetti, L., Neurotherapeutics, 2016, vol. 13, pp. 918–927. https://doi.org/10.1007/s13311-016-0462-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henriques, A., Croixmarie, V., Priestman, D.A., Rosenbohm, A., Dirrig-Grosch, S., D’Ambra, E., Huebecker, M., Hussain, G., Boursier-Neyret, C., Echaniz-Laguna, A., Ludolph, A.C., Platt, F.M., Walther, B., Spedding, M., Loeffler, J.P., and Gonzalez De Aguilar, J.L., Hum. Mol. Genet., 2015, vol. 24, pp. 7390–7405. https://doi.org/10.1093/hmg/ddv439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deikin, A.V., Kovrazhkina, E.A., Ovchinnikov, R.K., Bronovitskii, E.V., Razinskaya, O.D., Smirnov, A.P., Ermolkevich, T.G., Elyakov, A.B., Popov, A.N., Fedorov, E.N., Lytkina, O.A., Kukharskii, M.S., Tarasova, T.V., Shelkovnikova, T.A., Ustyugov, A.A., Ninkina, N.N., Gol’dman, I.L., Sadchikov, E.R., Bachurin, S.O., and Skvortsova, V.I., Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2014, vol. 114, pp. 63–70.

    Google Scholar 

  35. Giusto, N.M., Roque, M.E., Ilincheta, De., and Boschero, M.G., Lipids, 1992, vol. 27, pp. 835–839. https://doi.org/10.1007/BF02535859

    Article  CAS  PubMed  Google Scholar 

  36. Di Pardo, A., Basit, A., Armirotti, A., Amico, E., Castaldo, S., Pepe, G., Marracino, F., Buttari, F., Digilio, A.F., and Maglione, V., Front. Neurosci., 2017, vol. 11, p. 698. https://doi.org/10.3389/fnins.2017.00698

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lin, G., Wang, L., Marcogliese, P.C., and Bellen, H.J., Trends Endocrinol. Metab., 2019, vol. 30, pp. 106–117. https://doi.org/10.1016/j.tem.2018.11.003

    Article  CAS  PubMed  Google Scholar 

  38. Czubowicz, K., Jesko, H., Wencel, P., Lukiw, W.J., and Strosznajder, R.P., Mol. Neurobiol., 2019, vol. 56, pp. 5436–5455. https://doi.org/10.1007/s12035-018-1448-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brugg, B., Michel, P.P., Agid, Y., and Ruberg, M., J. Neurochem., 1996, vol. 66, pp. 733–739. https://doi.org/10.1046/j.1471-4159.1996.66020733.x

    Article  CAS  PubMed  Google Scholar 

  40. France-Lanord, V., Brugg, B., Michel, P.P., Agid, Y., and Ruberg, M., J. Neurochem., 1997, vol. 69, pp. 1612–1621. https://doi.org/10.1046/j.1471-4159.1997.69041612.x

    Article  CAS  PubMed  Google Scholar 

  41. Bras, J., Singleton, A., Cookson, M.R., and Hardy, J., FEBS J., 2008, vol. 275, pp. 5767–5773. https://doi.org/10.1111/j.1742-4658.2008.06709.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gutner, U.A., Shupik, M.A., Maloshitskaya, O.A., Sokolov, S.A., Rezvykh, A.P., Funikov, S.Yu., Lebedev, A.T., Ustyugov, A.A., and Alesenko, A.V., Biochemistry (Moscow), 2019, vol. 84, pp. 1166–1176. https://doi.org/10.1134/S0006297919100055

    Article  CAS  PubMed  Google Scholar 

  43. Filippov, V., Song, M.A., Zhang, K., Vinters, H.V., Tung, S., Kirsch, W.M., Yang, J., and Duerksen-Hughes, P.J., J. Alzheimer’s Dis., 2012, vol. 29, pp. 537–547. https://doi.org/10.3233/JAD-2011-111202

    Article  CAS  Google Scholar 

  44. Siskind, L.J., Kolesnick, R.N., and Colombini, M., J. Biol. Chem., 2002, vol. 277, pp. 26796–267803. https://doi.org/10.1074/jbc.M200754200

    Article  CAS  PubMed  Google Scholar 

  45. Yonutas, H.M., Pandya, J.D., and Sullivan, P.G., J. Bioenerg. Biomembr., 2015, vol. 47, pp. 149–154. https://doi.org/10.1007/s10863-014-9593-5

    Article  CAS  PubMed  Google Scholar 

  46. Brown, M.R., Sullivan, P.G., and Geddes, J.W., J. Biol. Chem., 2006, vol. 281, pp. 11658–11668. https://doi.org/10.1074/jbc.M510303200

    Article  CAS  PubMed  Google Scholar 

  47. Brown, M.R., Geddes, J.W., and Sullivan, P.G., J. Bioenerg. Biomembr., 2004, vol. 36, pp. 401–406. https://doi.org/10.1023/B:JOBB.0000041775.10388.23

    Article  CAS  PubMed  Google Scholar 

  48. Sullivan, P.G., Rabchevsky, A.G., Keller, J.N., Lovell, M., Sodhi, A., Hart, R.P., and Scheff, S.W., J. Comp. Neurol., 2004, vol. 474, pp. 524–534. https://doi.org/10.1002/cne.20130

    Article  PubMed  Google Scholar 

  49. Bienias, K., Fiedorowicz, A., Sadowska, A., Prokopiuk, S., and Car, H., Pharmacol. Rep., vol. 668, pp. 570–581. https://doi.org/10.1016/j.pharep.2015.12.008

  50. Berry, J.D., Paganoni, S., Atassi, N., Macklin, E.A., Goyal, N., Rivner, M., Simpson, E., Appel, S., Grasso, D.L., Mejia, N.I., Mateen, F., Gill, A., Vieira, F., Tassinari, V., and Perrin, S., Muscle Nerve, 2017, vol. 56, pp. 1077–1084. https://doi.org/10.1002/mus.25733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pharaoh, G., Sataranatarajan, K., Street, K., Hill, S., Gregston, J., Ahn, B., Kinter, C., Kinter, M., and Van Remmen, H., Front. Neurosci., 2019, vol. 13, p. 487. https://doi.org/10.3389/fnins.2019.00487

    Article  PubMed  PubMed Central  Google Scholar 

  52. Funikov, S.Y., Rezvykh, A.P., Mazin, P.V., Morozov, A.V., Maltsev, A.V., Chicheva, M.M., Vikhareva, E.A., Evgen’ev, M.B., and Ustyugov, A.A., Neurogenetics, 2018, vol. 19, pp. 189–204. https://doi.org/10.1007/s10048-018-0553-9

    Article  CAS  PubMed  Google Scholar 

  53. Krasnov, G.S., Dmitriev, A.A., Kudryavtseva, A.V., Shargunov, A.V., Karpov, D.S., Uroshlev, L.A., Melnikova, N.V., Blinov, V.M., Poverennaya, E.V., Archacov, A.I., Lisitsa, A.V., and Ponomarenko, E.A., J. Proteome Res., 2015, vol. 14, pp. 3729–3737. https://doi.org/10.1021/acs.jproteome.5b00490

    Article  CAS  PubMed  Google Scholar 

  54. Bolger, A.M., Lohse, M., and Usadel, B., Bioinformatics, 2014, vol. 30, pp. 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R., Bioinformatics, 2013, vol. 29, pp. 15–21. https://doi.org/10.1093/bioinfor-matics/bts635

    Article  CAS  PubMed  Google Scholar 

  56. Anders, S., Pyl, P.T., and Huber, W., Bioinformatics, 2015, vol. 31, pp. 166–169. https://doi.org/10.1101/002824

    Article  CAS  PubMed  Google Scholar 

  57. Robinson, M.D., McCarthy, D.J., and Smyth, G.K., Bioinformatics, 2010, vol. 26, pp. 139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  58. R Core Team, R Language Definition, R Foundation for Statistical Computing, Vienna, Austria, 2000.

    Google Scholar 

  59. Thissen, D., Steinberg, L., and Kuang, D., J. Educ. Behav. Stat., 2002, vol. 27, pp. 77–83. https://doi.org/10.3102/10769986027001077

    Article  Google Scholar 

  60. Wickham, H., Wiley Interdiscip. Rev., Comput. Stat., 2011, vol. 3, pp. 180–185. https://doi.org/10.1002/wics.147

    Article  Google Scholar 

  61. Bligh, T.G. and Dyer, W.J., Can. J. Phys., 1959, vol. 37, pp. 911–917. https://doi.org/10.1139/o59-099

    Article  CAS  Google Scholar 

  62. Sullards, M.C., Methods Enzymol., 2000, vol. 312, pp. 32–45. https://doi.org/10.1016/S0076-6879(00)12898-8

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Maintenance of the animals was provided by the Program for Support of Bioresource Collections of the Institute of Physiologically Active Substances of the Russian Academy of Sciences and carried out on the equipment of the Center for Collective Use of the Institute of Physiologically Active Substances of the Russian Academy of Sciences.

The analysis of high-throughput sequencing data was carried out on the equipment of the Genome Shared Use Center of the Engelhardt Institute of Molecular Biology, RAS (http://www.eimb.ru/rus/ckp/ccu_genome_c.php).

Funding

The study of neurodegenerative processes in model animals of the FUS(1-359) line was carried out with the support of the Russian Science Foundation (project no. 19-13-00378).

The animals were kept within the framework of the state assignment of the Institute of Physiologically Active Substances of the Russian Academy of Sciences no. 0090-2017-0019.

Studies of the properties of lipids in neuropathology were carried out within the framework of the state assignment of the Institute of Physiologically Active Substances of the Russian Academy of Sciences (topic no. 44.4, state registration number 01201253310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Alessenko.

Ethics declarations

Conflict of InterestsThe authors declare no conflicts of interest.

All applicable international, national, and institutional guidelines for the care and use of animals have been followed.

Additional information

Translated by N. Onishchenko

Abbreviations: ALS, amyotrophic lateral sclerosis; GalCER, galactosylceramide; SphL, sphingolipids; SM, sphingomyelin; CER, ceramide; 3-KSR, 3-ketodihydrosphyngoreductase; Asah, ceramidase; Asah1, acid ceramidase; aSMase, acid sphingomyelinase; CerS, ceramide synthase; DES, dihydroceramide desaturase; FUS(1-359), FUS transgenic mice; GALC, galactosylceramidase; nSMase, neutral sphingomyelinase; SMase, sphingomyelinase; SMS, sphingomyelinase synthase; SOD1, superoxide dismutase; SPT, serine palmitoyl transferase.

Corresponding author; phone: +7 (905) 588-50-66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shupik, M.A., Gutner, U.A., Ustyugov, A.A. et al. Changes in the Metabolism of Sphingomyelin and Ceramide in the Brain Structures and Spinal Cord of Transgenic Mice (FUS(1-359)) Modeling Amyotrophic Lateral Sclerosis. Russ J Bioorg Chem 48, 178–189 (2022). https://doi.org/10.1134/S1068162022010137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162022010137

Keywords:

Navigation