Skip to main content
Log in

Unstable Oscillating Systems with Hysteresis: Problems of Stabilization and Control

  • CONTROL IN DETERMINISTIC SYSTEMS
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The work is devoted to studying the dynamics of unstable oscillating systems (in the form of an inverted pendulum) controlled by the action of a hysteretic type. The results for different types of motion of a suspension point are presented, in particular, for vertical and horizontal motion. A mathematical model of the inverted pendulum with an oscillating suspension is considered. For this pendulum the explicit criteria of stability are obtained using the linearized equations of motion. The dependences between the initial conditions and the value of the control parameters providing periodic oscillations of the pendulum are described. A mathematical model of the inverted pendulum with feedback control is given under the conditions of the horizontal motion of the suspension point. The conditions that guarantee the stabilization of the considered system are obtained; the conditions are formulated in terms of constraints on the initial conditions. The solution to the problem of the optimal control of an oscillating system is presented in the sense of minimization of a quadratic goal functional. The stabilization problem for an unstable system with distributed parameters, the flexible inverted pendulum, is also considered, and the stabilization conditions are formulated. Fulfilment of these conditions ensures the boundedness of the phase coordinates in the infinite interval of time. The optimal parameters (in the sense of minimization of a quadratic goal functional) corresponding to stabilization of the distributed system are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. P. L. Kapitsa, “Pendulum with vibrating suspension,” Usp. Fiz. Nauk 44, 7–20 (1951).

    Article  Google Scholar 

  2. P. L. Kapitsa, “Dynamic stability of the pendulum with an oscillating suspension point,” Zh. Eksp. Teor. Fiz. 21, 588–597 (1951).

    MathSciNet  Google Scholar 

  3. A. Stephenson, “On an induced stability,” Phylos. Mag. 15, 233 (1908).

    Article  Google Scholar 

  4. E. I. Butikov, “An improved criterion for Kapitza’s pendulum stability,” J. Phys. A: Math. Theor. 44, 295202 (2011).

    Article  MathSciNet  Google Scholar 

  5. E. I. Butikov, “Oscillations of a simple pendulum with extremely large amplitudes,” Eur. J. Phys. 33, 1555–1563 (2012).

    Article  Google Scholar 

  6. Y. V. Mikheev, V. A. Sobolev, and E. M. Fridman, “Asymptotic analysis of digital control systems,” Autom. Remote Control 49, 1175–1180 (1988).

    MathSciNet  MATH  Google Scholar 

  7. M. E. Semenov, O. O. Reshetova, A. V. Tolkachev, A. M. Solovyov, and P. A. Meleshenko, “Oscillations under hysteretic conditions: From simple oscillator to discrete Sine-Gordon model,” in Topics in Nonlinear Mechanics and Physics: Selected Papers from CSNDD 2018 (Singapore, 2019), pp. 229–253.

  8. M. E. Semenov, M. G. Matveev, P. A. Meleshenko, and A. M. Solov’ev, “Dynamics of a damping device based on ishlinsky material,” Mekhatron., Avtomatiz., Upravl., No. 20, 106–113 (2019).

  9. M. E. Semenov, M. G. Matveev, G. N. Lebedev, and A. M. Solov’ev, “Stabilization of a flexible inverted pendulum with the hysteretic properties,” Mekhatron., Avtomatiz., Upravl., No. 8, 516–525 (2017).

  10. Z. Y. Zhang and X. J. Miao, “Global existence and uniform decay forwave equation with dissipative term and boundary damping,” Comput. Math. Appl. 59, 1003–1018 (2010).

    Article  MathSciNet  Google Scholar 

  11. E. I. Butikov, “Subharmonic resonances of the parametrically driven pendulum,” J. Phys. A: Math. Theor. 35, 6209–6231 (2002).

    Article  Google Scholar 

  12. J. Y. Sun, X. C. Huang, and X. T. Liu, “Study on the force transmissibility of vibration isolators with geometric nonlinear,” Nonlin. Dyn. 74, 1103–1112 (2013).

    Article  Google Scholar 

  13. V. I. Ryazhskikh, M. E. Semenov, A. G. Rukavitsyn, O. I. Kanishcheva, A. A. Demchuk, and P. A. Meleshenko, “Stabilization of inverted pendulum on a two-wheeled vehicle,” Vestn. YuUGU, Ser. Mat., Fiz., Mekh. 9 (3), 27–33 (2017).

    MATH  Google Scholar 

  14. F. L. Chernous’ko, L. D. Akulenko, and B. N. Sokolov, Swing Control (Nauka, Moscow, 1980) [in Russian.

  15. Lipo Wang and J. Ross, “Synchronous neural networks of nonlinear threshold elements with hysteresis,” Neurobiology 87, 988–992 (1990).

    Google Scholar 

  16. Z. Y. Zhang, Z. H. Liu, X. J. Miao, and Y. Z. Chen, “Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping,” Math. Phys. 52, 023502 (2011).

    Article  MathSciNet  Google Scholar 

  17. A. M. Solovyov, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, M. A. Popov, and E. G. Kabulova, “Hysteretic nonlinearity and unbounded solutions in oscillating systems,” Proc. Eng. 201, 578–583 (2017).

    Article  Google Scholar 

  18. M. E. Semenov, A. M. Solovyov, J. M. Balthazar, and P. A. Meleshenko, “Nonlinear damping: From viscous to hysteretic,” in Recent Trends in Applied Nonlinear Mechanics and Physics, Ed. by M. Belhaq, Springer Proc. Phys. 199, 259–275 (2018).

  19. S. A. Reshmin, “Finding the principal bifurcation value of the maximum control torque in the problem of optimal control synthesis for a pendulum,” J. Comput. Syst. Sci. Int. 47, 163 (2008).

    Article  MathSciNet  Google Scholar 

  20. S. A. Reshmin and F. L. Chernous’ko, “Time-optimal control of an inverted pendulum in the feedback form,” J. Comput. Syst. Sci. Int. 45, 383 (2006).

    Article  MathSciNet  Google Scholar 

  21. N. V. Anokhin, “Bringing a multilink pendulum to the equilibrium position using a single control torque,” J. Comput. Syst. Sci. Int. 52, 717 (2013).

    Article  MathSciNet  Google Scholar 

  22. A. M. Formal’skii, “On stabilization of an inverted double pendulum with one control torque,” J. Comput. Syst. Sci. Int. 45, 337 (2006).

    Article  MathSciNet  Google Scholar 

  23. S. V. Aranovskii, A. E. Biryuk, E. V. Nikulchev, I. V. Ryadchikov, and D. V. Sokolov, “Observer design for an inverted pendulum with biased position sensors,” J. Comput. Syst. Sci. Int. 58, 297 (2019).

    Article  Google Scholar 

  24. M. S. Osintsev and V. A. Sobolev, “Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations,” Comput. Math. Math. Phys. 54, 45 (2014).

    Article  MathSciNet  Google Scholar 

  25. K. Magnus, Vibrations (Blackie and Son, London, 1965).

    Google Scholar 

  26. R. A. Nelepin, Research Methods for Nonlinear Automatic Control Systems, Ed. by R. A. Nelepin (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  27. M. A. Krasnosel’skii and A. V. Pokrovskii, Hysteresis Systems (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  28. N. V. Butenin, Yu. I. Neimark, and N. L. Fufaev, Introduction to the Theory of Nonlinear Oscillations (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  29. V. A. Pliss, Nonlocal Problems of the Theory of Oscillations (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  30. M. A. Krasnosel’skii and A. V. Pokrovskii, “Periodic oscillations in systems with relay nonlinearities,” Dokl. Akad. Nauk SSSR 216, 733–736 (1974).

    MathSciNet  Google Scholar 

  31. F. R. Gantmakher, Matrix Theory (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  32. Chao Xu and Xin Yu, “Mathematical model of elastic inverted pendulum control system,” J. Control Theory Appl. 3, 281–282 (2004).

    Article  Google Scholar 

  33. M. Dadfarnia, N. Jalili, B. Xian, and D. M. Dawson, “A Lyapunov-based piezoelectric controller for flexible cartesian robot manipulators,” J. Dyn. Syst., Meas. Control 126, 347 (2004).

    Article  Google Scholar 

  34. E. P. Dadios, P. S. Fernandez, and D. J. Williams, “Genetic algorithm on line controller for the flexible inverted pendulum,” J. Adv. Comput. Intell. Intell. Inform. 10 (2) (2006).

  35. Zheng-Hua Luo and Bao-Zhu Guo, “Shear force feedback control of a single-link flexible robot with a revolute joint,” IEEE Trans. Autom. Control 42 (1) (1997).

  36. Guangpu Xia, Tang Zheng, and Yong Li, “Hopfield neural network with hysteresis for maximum cut problem,” Neural Inform. Process. Lett. Rev. 4 (5) (2004).

  37. J. T. Pierce-Shimomura, T. M. Morse, and S. R. Lockery, “The fundamental role of pirouettes in caenorhabditis elegance chemotaxis,” Neuroscience 19, 9557–9569 (1999).

    Article  Google Scholar 

Download references

Funding

The work is supported by the Russian Foundation for Basic Research (project no. 19-08-00158) and by the Russian Science Foundation (project no. 19-11-0197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Medvedskii or M. E. Semenov.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedskii, A.L., Meleshenko, P.A., Nesterov, V.A. et al. Unstable Oscillating Systems with Hysteresis: Problems of Stabilization and Control. J. Comput. Syst. Sci. Int. 59, 533–556 (2020). https://doi.org/10.1134/S1064230720030090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230720030090

Navigation