Skip to main content
Log in

Difference in Some Biological Properties of Saline and Non-saline Soil under Sugarcane Cultivation

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Microorganisms as essential components of soils have important roles in biochemical cycles of organic matter conversion into nutrients available for an uptake by plants. Soil salinity is an important factor that affects microbial diversity and activity. The aim of this study was to investigate the effects of soil salinity on microbial biomass, nitrification rate and urease activity within the rhizosphere of sugarcane. Microbial activity, i.e., urease activity and nitrification rates in saline soil were lower than those in non-saline soil under sugarcane cultivation. Microbial diversity was assessed using different techniques for DNA extraction from the studied soils and the single-strand conformation polymorphism (SSCP) analysis of DNA extracts. It was found that saline soil had lower microbial biomass and respiration rate, but higher diversity of soil bacteria as compared to those within non-saline soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Parvaiz and S. Satyawati, “Salt stress and phytobiochemical responses of plants—a review,” Plant Soil Environ. 54, 89–99 (2008).

    Article  Google Scholar 

  2. A. P. Gandhi and K. V. Paliwal, “Mineralization and gaseous losses of nitrogen from urea and ammonium sulphate in salt-affected soils,” Plant Soil 45, 247–255 (2004).

    Article  Google Scholar 

  3. B. C. Yuan, X. G. Xu, Z. Z. Li, T. P. Gao, M. Gao, X. W. Fan, and H. M. Deng, “Microbial biomass and activity in alkalized magnesic soils under arid conditions,” Soil Biol. Biochem. 39, 3004–3013 (2007).

    Article  Google Scholar 

  4. C. García, T. Hernández, and F. Costa, “Microbial activity in soils under Mediterranean environmental conditions,” Soil Biol. Biochem. 26, 1185–1191 (1994).

    Article  Google Scholar 

  5. C. L. A. Asadu, I. A. Nwafor, and G. U. Chibuike, “Contributions of microorganisms to soil fertility in adjacent forest, fallow and cultivated land use types in Nsukka, Nigeria,” Int. J. Agric. For. 5 (3), 199–204 (2015).

    Google Scholar 

  6. C. Yeates, M. R. Gillings, A. D. Davison, N. Altavilla, and D. A. Veal, “PCR amplification of crude microbial DNA extracted from soil,” Lett. Appl. Microbiol. 25, 303–307(1997).

    Article  Google Scholar 

  7. C. C. Young, R. L. Burghoff, L. G. Keim, V. Minakbernero, J. R. Lute, and S. M. Hinton, “Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplifiable DNA from soils,” Appl. Environ. Microbiol. 59, 1972–1974 (1993).

    Google Scholar 

  8. D. G. Zvyagintsev, G. M. Zenova, and G. V. Oborotov, “Moderately haloalkaliphilic actinomycetes in salt-affected soils,” Eurasian Soil Sci. 42, 1515–1520 (2009).

    Article  Google Scholar 

  9. E. B. Hollister, A. S. Engledow, A. J. M. Hammett, et al., “Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments,” ISME J. 4, 829–838 (2010).

    Article  Google Scholar 

  10. E. E. Andronov, S. N. Petrova, A. G. Pinaev, et al., “Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques,” Eurasian Soil Sci. 45, 147–156 (2012).

    Article  Google Scholar 

  11. E. L. Madsen, “Microorganisms and their roles in fundamental biogeochemical cycles,” Curr. Opin. Biotechnol. 22, 3456–464 (2011).

    Article  Google Scholar 

  12. E. Lamizadeh, N. Enayatizamir, and H. Motamedi, “Isolation and identification of plant growth-promoting rhizobacteria (PGPR) from the rhizosphere of sugarcane in saline and non-saline soil,” Int. J. Curr. Microbiol. Appl. Sci. 5 (10), 1072–1083 (2016).

  13. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass-C,” Soil Biol. Biochem. 19, 703–707 (1987).

  14. E. V. Blagodatskaya, S. A. Blagodatskii, and T. H. Anderson, “Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems,” Microbiology (Moscow) 72, 744–749 (2003)

    Article  Google Scholar 

  15. F. Nourbakhsh and C.M. Monreal, “Effects of soil properties and trace metals on urease of calcareous soils,” Biol. Fertil. Soils 40, 359–362 (2004).

    Article  Google Scholar 

  16. G. M. Zenova, M. S. Dubrova, A. I. Kuznetsova, et al., “Ecological and taxonomic features of actinomycetal complexes in soils of the Lake Elton basin,” Eurasian Soil Sci. 49, 213–216 (2016).

    Article  Google Scholar 

  17. H. Hasbullah and P. Marschner, “Residue properties influence the impact of salinity on soil respiration,” Biol. Fertil. Soils 51 (1), 99–111 (2015).

    Article  Google Scholar 

  18. H. Kheyrodin and H. Antoun, “Measurement of microbial activity and applicability of dissolved DNA as indicator of microbial activity in pasturage soil,” Afr. J. Agric. Res. 6, 3445–3450 (2011).

    Google Scholar 

  19. H. Pathak and D. L. N. Rao, “Carbon and nitrogen mineralization from added organic matter in saline and alkali soils,” Soil Biol. Biochem. 30, 695–702 (1998).

    Article  Google Scholar 

  20. H. Yang, J. Hu, X. Long, Z. Liu, and Z. Rengel, “Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke,” Sci. Rep. 6, 20687 (2016).

    Article  Google Scholar 

  21. J. Bassam, G. Caetano-Anollés, and P. M. Gresshoff, “Fast and sensitive silver staining of DNA in polyacrylamide gels,” Anal. Biochem. 196, 80–83 (1991).

    Article  Google Scholar 

  22. J. Borneman, P. W. Skroch, K. M. O’Sullivan, et al., “Molecular microbial diversity of an agricultural soil in Wisconsin,” Appl. Environ. Microbiol. 62, 1935–1943 (1996).

    Google Scholar 

  23. J. P. Anderson, A. L. Page, R. H. Miller, and D. R. Keeney, “Soil respiration,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Soil Science Society of America, Madison, 1982), pp. 831–871.

  24. J. Rousk, F.K. Elyaagubi, D. L. Jones, and D. L Godbold, “Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient,” Soil Biol. Biochem. 43, 1881–1887 (2011).

    Article  Google Scholar 

  25. J. Rousk, P.C. Brookes, and E. Baath, “Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization,” Appl. Environ. Microbiol. 75, 1589–1596 (2009).

    Article  Google Scholar 

  26. J. Rowland and B. Nguyen, “Use of polyethylene–glycol for purification of DNA from leaf tissue of woody plants,” Biotechniques 14, 734 (1993).

    Google Scholar 

  27. J. Shi, H. R. Lin, X.F. Yuan, X. C. Chen, C. F. Shen, and Y. X. Chen, “Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur,” Molecules 16, 1409–1417 (2011).

    Article  Google Scholar 

  28. J. Wichern, F. Wichern, and G. Joergensen, “Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils,” Geoderma 132 (1–2), 100–108 (2006).

    Article  Google Scholar 

  29. J. Zhou, M. A. Bruns, and J. M. Tiedje, “DNA recovery from soils of diverse composition,” Appl. Environ. Microbiol. 62, 316–322 (1996).

    Google Scholar 

  30. J. M. Chaparro, A. M. Sheflin, D. K. Manter, and J. M. Vivanco, “Manipulating the soil microbiome to increase soil health and plant fertility,” Biol. Fertil. Soils 48, 489–499 (2012).

    Article  Google Scholar 

  31. M. A. Tabatabai and J. M. Bremner, “Assay of urease activity in soils,” Soil Biol. Biochem. 4 (4), 479–487 (1972).

    Article  Google Scholar 

  32. M. Akhtar, F. Hussain, M. Y. Ashraf, T. M. Qureshi, J. Akhter, and A. R. Awan, “Influence of salinity on nitrogen transformations in soil,” Commun. Soil Sci. Plant Anal. 43 (12), 1674–1683 (2012).

    Article  Google Scholar 

  33. M. Irshad, and T. Honna, S. Yamamoto, A.E. Eneji, and N. Yamasaki, “Nitrogen mineralization under saline conditions,” Commun. Soil Sci. Plant Anal. 36, 1681–1899 (2005).

    Article  Google Scholar 

  34. M. Tejada, C. Garcia, J. Gonzalez, and M. Hernandez, “Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil,” Soil Biol. Biochem. 38, 1413–1421 (2006).

    Article  Google Scholar 

  35. M. S. Mavi and P. Marschner, “Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen,” Soil Res. 51 (1), 68–75 (2013).

    Article  Google Scholar 

  36. N. Rietz and R. J. Haynes, “Effects of irrigation-induced salinity and sodicity on soil microbial activity,” Soil Biol. Biochem. 35, 845–854 (2003).

    Article  Google Scholar 

  37. P. K. Gupta, Soil, Plant, Water and Fertilizer Analysis (Agrobios, Jodhpur, Raj., 2004).

  38. R. Jacoby, M. Peukert, A. Succurro, A. Koprivova, and S. Kopriva, “The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions,” Front. Plant Sci. 8, 1–19 (2017).

    Article  Google Scholar 

  39. R. Calbrix, S. Barray, O. Chabrerie, L. Fourrie, and K. Laval, “Impact of organic amendments on the dynamic of soil microbial biomass and bacterial communities in cultivated land,” Appl. Soil Ecol. 35, 511–522 (2007).

    Article  Google Scholar 

  40. R. J. Steffan and R. M. Atlas, “Polymerase chain-reaction—applications in environmental microbiology,” Annu. Rev. Microbiol. 45, 137–161 (1991).

    Article  Google Scholar 

  41. R. J. Steffan, J. Goksoyr, A.K. Bej, and R. M. Atlas, “Recovery of DNA from soils and sediments,” Appl. Environ. Microbiol. 54, 2908–2915 (1998).

    Google Scholar 

  42. R. Ortíz-Castro, H. A. Contreras-Cornejo, L. Macías-Rodríguez, and J. López-Bucio, “The role of microbial signals in plant growth and development,” Plant Signal. Behav. 4 (8), 701–712 (2009).

    Article  Google Scholar 

  43. R. Setia, P. Marschner, J. Baldock, D. Chittleborough, and V. Verma, “Relationships between carbon dioxide emission and soil properties in salt-affected landscapes,” Soil Biol. Biochem. 43, 667–674 (2011).

    Article  Google Scholar 

  44. R. D. Laura, “Effects of neutral salts on carbon and nitrogen mineralization of organic matter in soil,” Plant Soil 41, 113–127 (1974).

    Article  Google Scholar 

  45. S. F. Wright and A. Upadhyaya, “A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi,” Plant Soil 198, 97–107(1998).

    Article  Google Scholar 

  46. U. Kumar, V. Kumar, and J. P. Singh, “Effect of different factors on hydrolysis and nitri?cation of urea in soils,” Arch. Agron. Soil Sci. 53, 173–182 (2007).

    Article  Google Scholar 

  47. V. N. Wong, R. C. Dalal, and R. S. Greene, “Carbon dynamics of sodic and saline soils following gypsum and organic material additions: laboratory incubation,” Appl. Soil Ecol. 41 (1), 29–40 (2009).

    Article  Google Scholar 

  48. W. T. Frankenberger and F. T. Bingham, “Influence of salinity on soil enzyme activities,” Soil Sci. Soc. Am. J. 46, 1173–1177 (1982).

    Article  Google Scholar 

  49. Y.-Z. Su, T.-N. Liu, X.-F. Wang, and R. Yang, “Salinity effects on soil organic carbon and its labile fractions, and nematode communities in irrigated farmlands in an arid region, northwestern China,” Sci. Cold Arid Reg. 8 (1), 46–53 (2016).

    Google Scholar 

  50. Y. Yao, Z. He, M. J. Wilson, and C. D. Campbell, “Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use,” Microb. Ecol. 40, 223–237 (2000).

    Google Scholar 

  51. Y. L. Tsai, and B. H. Olson, “Rapid method for direct extraction of DNA from soil and sediments,” Appl. Environ. Microbiol. 57 (4), 1070–1074 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Enayatizamir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamizadeh, E., Enayatizamir, N. & Motamedi, H. Difference in Some Biological Properties of Saline and Non-saline Soil under Sugarcane Cultivation. Eurasian Soil Sc. 52, 690–695 (2019). https://doi.org/10.1134/S1064229319060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319060085

Keywords:

Navigation