Skip to main content
Log in

Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Chloride ions in soil may interact with soil organic matter and form organochlorine compounds in situ. The biotic chlorination of soil organic substances takes places under aerobic conditions with participation of H2O2 forming from peroxidases released by soil microorganisms (in particular, by microscopic fungi). The abiotic chlorination results also from the redox reactions with the participation of Fe3+/Fe2+ system, but it develops several times slower. Chlorination of soil organic substances is favored by Cl coming to soil both from natural (salinized soil-forming rocks and groundwater, sea salt) and anthropogenic sources of chlorides, i.e., spills of saline water at oil production, road deicing chemicals, mineral fertilizers, etc. The study of the biogeochemical chlorine cycle should take into account the presence of organochlorine compounds in soils, in addition to transformation and migration of chloride ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bashkin, Biogeochemistry (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  2. Yu. N. Vodyanitskii, “The composition of Fe-Mn nodules as determined by synchrotron X-ray analysis (review of publications),” Eurasian Soil Sci. 39, 147–156 (2006).

    Article  Google Scholar 

  3. Yu. N. Vodyanitskii, N. A. Avetov, A. T. Savichev, S. Ya. Trofimov, and E. A. Shishkonakova, “Influence of oil and stratal water contamination on the ash composition of oligotrophic peat soils in the oil-production area (the Ob’ region),” Eurasian Soil Sci. 46, 1032–1041 (2013).

    Article  Google Scholar 

  4. Yu. N. Vodyanitskii, N. A. Avetov, A. T. Savichev, S. Ya. Trofimov, and E. A. Shishkonakova, “Content of chemical elements in peat soils salted by drilling waste waters at the oil production site in the Central Ob’ region,” Agrokhimiya, No. 1, 75–84 (2013).

    Google Scholar 

  5. Yu. N. Vodyanitskii, D. V. Manakhov, and A. T. Savichev, “Macro- and microelements including rare earth elements in some soils of the Sakhalin Island,” Eurasian Soil Sci. 44, 1090–1100 (2015).

    Article  Google Scholar 

  6. Yu. N. Vodyanitskii and S.A. Shoba, “Current analytical techniques in soil biogeochemistry,” Moscow Univ. Soil Sci. Bull. 44, 164–173 (2013).

    Article  Google Scholar 

  7. M. I. Gerasimova, M. N. Stroganova, N. V. Mozharova, and T. V. Prokof’eva, Anthropogenic Soils: Genesis, Geography, Recultivation (Oikumena, Smolensk, 2003) [in Russian].

    Google Scholar 

  8. G. A. Zavarzin and N. N. Kolotilova, Introduction to Natural Microbiology (Universitet, Moscow, 2001) [in Russian].

    Google Scholar 

  9. S. A. Illarionov, Ecological Aspects of Remediation of Petroleum-Polluted Soils (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2004) [in Russian].

    Google Scholar 

  10. V. A. Kovda, Biogeochemistry of the Soil Cover (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  11. G. V. Motuzova and E. A. Karpova, Chemical Pollution of the Biosphere and Its Ecological Consequences (Moscow State Univ., Moscow, 2013) [in Russian].

    Google Scholar 

  12. A. I. Perel’man and N. S. Kasimov, Geochemistry of Landscape (Astreya, Moscow, 1999) [in Russian].

    Google Scholar 

  13. N. P. Solntseva, Oil Production and Geochemistry of Natural Landscapes (Moscow State Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  14. D. Aamlid and R. Horntvedt, “Sea salt impact on forest in western Norway,” Forestry 44, 171–178 (2002).

    Article  Google Scholar 

  15. C. N. Albers, O. S. Jacobsen, E. M. M. Flores, J. S. F. Pereira, and T. Laier, “Spatial variation in natural formation of chloroform in soils of four coniferous forests,” Biogeochemistry 44, 317–334 (2011).

    Article  Google Scholar 

  16. D. Bastviken, T. Svensson, S. Karlsson, P. Sanden, and G. Oberg, “Temperature sensitivity indicates that chlorination of organic matter in forest soil is primarily biotic,” Environ. Sci. Technol. 44, 3569–3573 (2009).

    Article  Google Scholar 

  17. D. Bastviken, F. Thomsen, T. Svensson, S. Karlsson, P. Sanden, G. Shaw, M. Maticha, and G. Oberg, “Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter,” Geochim. Cosmochim. Acta 44, 3182–3192 (2007).

    Article  Google Scholar 

  18. H. Biester, F. Keppler, A. Putschew, A. Martinez-Cortizas, and M. Petri, “Halogen retention, organohalogen and the role of organic matter decomposition on halogen enrichment in two Chilean peat bogs,” Environ. Sci. Technol. 44, 1984–1991 (2004).

    Article  Google Scholar 

  19. F. Breider and C. N. Albers, “Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment: a critical review,” Chemosphere 44, 145–154 (2015).

    Article  Google Scholar 

  20. N. Clarke, K. Fuksova, M. Gryndler, Z. Lachmanova, H.-H. Liste, et al., “The formation and fate of chlorinated organic substances in temperate and boreal forest soils,” Environ. Sci. Pollut. Res. 44, 127–143 (2009).

    Article  Google Scholar 

  21. E. De Jong and J. A. Field, “Sulfur tuft and turkey tail: biosynthesis and biodegradation of organohalogens by basidiomycetes,” Ann. Rev. Microbiol. 44, 375–414 (1997).

    Article  Google Scholar 

  22. W. B. De Leer, S. J. S. Sinninghe, C. Erkelens, and L. De Galan, “Identification of intermediates leading to chloroform and C-4 diacids in the chlorination of humic acids,” Environ. Sci. Technol. 44, 512–522 (1985).

    Article  Google Scholar 

  23. I. J. Fahimi, F. Keppler, and H. F. Scholer, “Formation of chloroacetic acids from soil, humic acid and phenolic moieties,” Chemosphere 44, 513–520 (2003).

    Article  Google Scholar 

  24. C. Flodin, E. Johansson, H. Boren, A. Grimvall, O. Dahlman, and R. Morck, “Chlorinated structures in high molecular weigth organic matter isolated from fresh and decaying plant material and soil,” Environ. Sci. Technol. 44, 2464–2468 (1997).

    Article  Google Scholar 

  25. Y. Gallard and U. von Gunten, “Chlorination of phenols: kinetics and formation of chloroform,” Environ. Sci. Technol. 44, 884–890 (2002).

    Article  Google Scholar 

  26. M. Ginder-Vogel and D. L. Sparks, “The impacts of x-ray absorption spectroscopy on under-standing soil processes and reaction mechanisms,” in Synchrotron-Based Techniques in Soils and Sediments, Ed. by B. Singh and M. Grafe (Elsevier, Amsterdam, 2010), Vol. 34, pp. 1–26.

    Google Scholar 

  27. G. W. Gribble, “The diversity of natural produced organohalogens,” Chemosphere 44, 289–297 (2003).

    Article  Google Scholar 

  28. M. Gryndler, J. Rohlenova, J. Kopecky, and M. Matucha, “Chloride concentration affects soil microbial community,” Chemosphere 44, 1401–1408 (2008).

    Article  Google Scholar 

  29. C. Gustafsson-Svard, S. Karlsson, G. Oberg, P. Sanden, et al., “Organic matter chlorination rates in different boreal soils: the role of soil organic matter content,” Environ. Sci. Technol. 44, 1504–1510 (2012).

    Article  Google Scholar 

  30. D. B. Harper, “Halomethane from halide ion—a highly efficient fungal conversion of environmental significance,” Nature 44, 55–57 (1985).

    Article  Google Scholar 

  31. E. J. Hoekstra, H. de Weerd, E. W. B. de Leer, and U. A. T. Brunkman, “Natural formation of chlorinated phenols, dibenzo-p-dioxins, and dibenzofurans in soil of a Douglas fir forest,” Environ. Sci. Technol. 44, 2543–2549 (1999).

    Article  Google Scholar 

  32. K. W. F. Howard and J. Haynes, “Groundwater contamination due to road de-icing chemicals—salt balance implications,” Geosci. Can. 44, 1–8 (1993).

    Google Scholar 

  33. E. Johansson, C. Krantz-Rulcker, B. X. Zhang, and G. Oberg, “Chlorination and biodegradation of lignin,” Soil Biol. Biochem. 44, 1029–1032 (2000).

    Article  Google Scholar 

  34. E. Johansson, P. Sanden, and G. Oberg, “Organic chlorine in deciduous and coniferous forest soils in southern Sweden,” Soil Sci. 44, 347–355 (2003).

    Google Scholar 

  35. E. Johansson, P. Sanden, and G. Oberg, “Spatial pattern of organic chlorine and chloride in Swedish forest soil,” Chemosphere 44, 391–397 (2003).

    Article  Google Scholar 

  36. F. Laturnus, I. Fahimi, M. Gryndler, A. Hartman, M. R. Heal, et al., “Natural formation and degradation of chloroacetic acids and volatile organochlorine in forest soil—challenges to understanding,” Environ. Sci. Pollut. Res. 44, 233–244 (2005).

    Article  Google Scholar 

  37. R. T. Lee, G. Shaw, H. Wadey, and X. Wang, “Specific association of 36Cl with low molecular weigth humic substance in soils,” Chemosphere 44, 1063–1070 (2001).

    Article  Google Scholar 

  38. A. Leri, M. B. Hay, A. Lanzirotti, W. Rao, and S. C. B. Myneni, “Quantitative determination of absolute organohalogen concentrations in environmental samples by x-ray absorption spectroscopy,” Anal. Chem. 44, 5711–5718 (2006).

    Article  Google Scholar 

  39. A. C. Leri and S. C. B. Myneni, “Organochlorine turnover in forest ecosystems: The missing link in the terrestrial chlorine cycle,” Global Biogeochem. Cycles 44, GB4021 (2010).

    Google Scholar 

  40. M. Matucha, N. Clarke, Z. Lachmanova, S. T. Forczek, K. Fukasova, and M. Gryndler, “Biogeochemical cycles of chlorine in the coniferous forest ecosystem: practical implications,” Plant Soil Environ. 44, 357–367 (2010).

    Google Scholar 

  41. M. Matucha, M. Gryndler, P. Schroder, S. T. Forczek, H. Uhlirofa, K. Fukasova, and J. Rohleva, “Chloroacetic acids—degradation intermediates of organic matter in forest soil,” Soil Biol. Biochem. 44, 382–385 (2007).

    Article  Google Scholar 

  42. A. McCulloch, “Chloroform in the environment sources, sinks and effects,” Chemosphere 50, 1291–1308 (2003).

    Article  Google Scholar 

  43. A. McCulloch, “Trichloroacetic acid in the environment,” Chemosphere 44, 667–686 (2002).

    Article  Google Scholar 

  44. K. Mengel and E. A. Kirkby, Principles of Plant Nutrition (International Potash Institute, Worblaufen-Bern, 1987).

    Google Scholar 

  45. K. Monde, H. Satoh, M. Nakamura, M. Tamura, and M. Takasuqi, “Organochlorine compounds from a terrestrial higher plant: structures and origin of chlorinated orcinol derivates from diseased bulbs of Lilium maximowiczii,” J. Nat. Prod. 44, 913–921 (1998).

    Article  Google Scholar 

  46. M. Montelius, Y. Thiry, L. Marang, J. Ranger, et al., “Experimental evidence of large changes in terrestrial chlorine cycling following altered tree species composition,” Environ. Sci. Technol. 44, 4921–4928 (2015).

    Article  Google Scholar 

  47. S. Myneni, “Formation of stable chlorinated hydrocarbons in weathering plant material,” Science 295, 1039–1041 (2002).

    Article  Google Scholar 

  48. A.-C. Norrstrom and E. Bergstedt, “The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils,” Water Air Soil Pollut. 44, 281–299 (2001).

    Article  Google Scholar 

  49. L. Nyberg, A. Rodhe, and K. Bishop, “Water transit times and flow paths from two line injections of 3H and 36Cl in a microcatchment at Gardsjon, Sweden,” Hydrol. Process. 44, 1557–1575 (1999).

    Article  Google Scholar 

  50. G. Oberg, “Chloride and organic chlorine in soil,” Acta Hydrochim. Hydrobiol. 44, 137–144 (1998).

    Article  Google Scholar 

  51. G. Oberg, “The natural chlorine cycle—fitting the scattered pieces,” Appl. Microbiol. Biotechnol. 58, 565–581 (2002).

    Article  Google Scholar 

  52. G. Oberg and C. Gron, “Sources of organic halogens in spruce forest soil,” Environ. Sci. Technol. 32, 1573–1579 (1998).

    Article  Google Scholar 

  53. G. Oberg, C. Johansen, and C. Gron, “Organic halogens in spruce forest through fall,” Chemosphere 44, 1689–1701 (1998).

    Article  Google Scholar 

  54. G. Oberg, E. Nordlund, and B. Berg, “In situ formation of organically bound halogens during decomposition of Norway spruce needles: effects of fertilization,” Can. J. For. Res. 44, 1040–1048 (1996).

    Google Scholar 

  55. G. Oberg and P. Sanden, “Retention of chloride in soil and cycling of organic matter-bond chlorine,” Hydrol. Process. 44, 2123–2136 (2005).

    Article  Google Scholar 

  56. D. M. Ramakrishna and T. Viraraghavan, “Environmental impact of chemical deicers—a review,” Water, Air Soil Pollut. 44, 49–63 (2005).

    Article  Google Scholar 

  57. P.-O. Redon, A. Abdelous, D. Bastviken, S. Cecchini, M. Nicolas, and Y. Thiry, “Chloride and organic chlorine in forest soils: residence time, and influence of ecological conditions,” Environ. Sci. Technol. 44, 7202–7208 (2011).

    Article  Google Scholar 

  58. P.-O. Redon, C. Jolivet, N. P. A. Saby, A. Abdelous, and Y. Thiry, “Occurrence of natural organic chlorine in soils for different land uses,” Biogeochemistry 44, 413–419 (2013).

    Article  Google Scholar 

  59. R. G. Reina, A. C. Leri, and S. C. B. Myneni, “ClKedge x-ray spectroscopic investigation of enzymatic formation of organochlorines in weathering plant material,” Environ. Sci. Technol. 44, 783–789 (2004).

    Article  Google Scholar 

  60. M. Rodstedth, C. Srahlberg, P. Sanden, and G. Oberg, “Chloride imbalance in soil lysimeters,” Chemosphere 44, 381–389 (2003).

    Article  Google Scholar 

  61. J. Rohlenova, M. Gryndler, S. T. Forczek, V. Handova, and M. Matucha, “Microbial chlorination of organic matter in the forest soil: investigation using chlorine 36 and its methodology,” Environ. Sci. Technol. 44, 3652–3655 (2009).

    Article  Google Scholar 

  62. P. Schroder, M. Matucha, S. T. Forczek, H. Uhlirova, K. Fuksova, and J. Albrechtova, “Uptake, translocation and fate of trichloroacetic acid in Norway spruce/soil system,” Chemosphere 44, 437–442 (2003).

    Article  Google Scholar 

  63. P. J. Silk, G. C. Lonenrgan, T. L. Arsenault, and C. D. Boyle, “Evidence of natural organochlorine formation in peat bogs,” Chemosphere 44, 2865–2880 (1997).

    Article  Google Scholar 

  64. T. Svensson, P. Sanden, D. Bastviken, and G. Oberg, “Chlorine transport in a small catchment in southeast Sweden during two years,” Biogeochemistry 82, 181–199 (2007).

    Article  Google Scholar 

  65. C. van den Hoof and Y. Thiry, “Modeling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behavior in a contaminated forest environment,” J. Environ. Radioact. 44, 56–67 (2012).

    Article  Google Scholar 

  66. J. Viers, B. Dupre, J.-J. Braun, R. Freydier, S. Greenberg, et al., “Evidence for non-conservative behavior of chlorine in humid tropical environments,” Aquat. Geochem. 44, 127–154 (2001).

    Article  Google Scholar 

  67. N. Winterton, “Chlorine: the only green element— towards a wider acceptance of its role in natural cycles,” Green Chem. 44, 173–225 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Vodyanitskii.

Additional information

Original Russian Text © Yu.N. Vodyanitskii, M.I. Makarov, 2017, published in Pochvovedenie, 2017, No. 9, pp. 1065–1073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vodyanitskii, Y.N., Makarov, M.I. Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review. Eurasian Soil Sc. 50, 1025–1032 (2017). https://doi.org/10.1134/S1064229317090113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317090113

Keywords

Navigation