Skip to main content
Log in

Transformation kinetics of corn and clover residues in mineral substrates of different composition

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Mineralization kinetics of corn and clover residues in quartz sand, loam, sand + 15% bentonite, and sand + 30% kaolinite have been studied. A scheme has been proposed for the transformation of plant residues in mineral substrates. Kinetic parameters of mineralization have been calculated with the use of a first-order two-term exponential polynomial. It has been shown that the share of labile organic carbon pool in the clover biomass is higher (57–63%) than in the corn biomass (47–49%), which is related to the biochemical composition of plant residues. The mineralization constants of clover residues generally significantly exceed those of corn because of the stronger stabilization of the decomposition products of corn residues. The turnover time of the labile clover pool (4–9 days) in all substrates and that of the labile corn pool (8–10 days) in sands and substrates containing kaolinites and bentonite are typical for organic acids, amino acids, and simple sugars. In the loamy substrate, the turnover time of labile corn pool is about 46 days due to the stronger stabilization of components of the labile pool containing large amounts of organic acids. The turnover time of the stable clover pool (0.95 years) is significantly lower than that of the stable corn pool (1.60 years) and largely corresponds to the turnover time of plant biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Aleksandrova, Soil Organic Matter and the Processes of Its Transformation (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  2. L. A. Grishina, Humification and Humus Status of Soils (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  3. A. G. Zavarzina, “Reconstruction of the genesis of paleosols on the basis of data on modern humus formation processes,” in Paleosols and Indicators of Continental Weathering in the History of the Biosphere (Moscow, 2010), pp. 36–75.

    Google Scholar 

  4. V. V. Kaganov and I. N. Kurganova, “Evaluation of the rates of organic matter mineralization in major soil types of European Russia at different temperature regimes,” Nauch. Ved. Belgorod. Gos. Univ., Ser. Estestv. Nauki 15 (16), 145–153 (2011).

    Google Scholar 

  5. G. N. Kurochkina and D. L. Pinskii, “Kinetics and thermodynamics of polyelectrolyte adsorption on synthetic aluminosilicate gels,” Eurasian Soil Sci. 36, 155–163 (2003).

    Google Scholar 

  6. A. A. Larionova, B. N. Zolotareva, I. V. Yevdokimov, S. S. Bykhovets, Ya. V. Kuzyakov, and F. Buegger, “Identification of labile and stable pools of organic matter in an agrogray soil,” Eurasian Soil Sci. 44, 628–640 (2011). doi 10.1134/S1064229311060093

    Article  Google Scholar 

  7. A. N. Mal’tseva, B. N. Zolotareva, and D. L. Pinskii, “Transformation of corn plant residues in loamy and sandy substrates,” Eurasian Soil Sci. 47, 466–477 (2014).

    Article  Google Scholar 

  8. Analysis of Soil Organic Matter, Ed. by A. I. Es’kova (Moscow, 2005) [in Russian].

  9. D. L. Pinskii and G. N. Kurochkina, “Features of the adsorption of polyacrylic acid by synthetic aluminosilicates,” Russ. J. Phys. Chem. A 79, 1646–1652 (2005).

    Google Scholar 

  10. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, and A. K. Khodzhaeva, “Biokinetic indication of the mineralizable pool of soil organic matter,” Eurasian Soil Sci. 40, 1208–1216 (2007).

    Article  Google Scholar 

  11. V. M. Semenov, I. K. Kravchenko, L. A. Ivannikova, T. V. Kuznetsova, N. A. Semenova, M. Gispert, and J. Pardini, “Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems,” Eurasian Soil Sci. 39, 251–260 (2006).

    Article  Google Scholar 

  12. M. V. Semenov, I. K. Kravchenko, V. M. Semenov, T. V. Kuznetsova, L. E. Dulov, S. N. Udal’tsov, and A. L. Stepanov, “Carbon dioxide, methane, and nitrous oxide fluxes in soil catena across the right bank of the Oka River (Moscow oblast),” Eurasian Soil Sci. 43, 541–549 (2010). doi 10.1134/S1064229310050078

    Article  Google Scholar 

  13. A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, M. V. Glagolev, et al., Modeling of the Dynamics of Soil Organic Matter (Moscow State Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  14. L. S. Travnikova, Organo-Mineral Interactions: Role in Soil Formation, Fertility, and Tolerance toward Degradation (Dokuchaev Soil Science Inst., Moscow, 2012) [in Russian].

    Google Scholar 

  15. A. D. Fokin, D. A. Knyazev, and Ya. V. Kuzyakov, “Destruction of 14C and 15N-amino acids and nucleic bases in soil and intake of their transformation products by the plants,” Pochvovedenie, No. 10, 70–80 (1992).

    Google Scholar 

  16. G. I. Gren and E. Bosatta, “Quality: a bridge between theory and experiments in soil organic matter studies,” Oikos 76, 522–528 (1996).

    Article  Google Scholar 

  17. I. Bertrand, B. Chabbert, B. Kurek, and S. Recous, “Can the biochemical features and histology of wheat residues explain their decomposition in soil?” Plant Soil 281, 291–307 (2006).

  18. I. Bertrand, M. Prévot, and B. Chabbert, “Soil decomposition of wheat internodes of different maturity stages: relative impact of the soluble and structural fractions,” Bioresource Technol. 100, 155–163 (2009).

    Article  Google Scholar 

  19. W. R. Cookson, D. A. Abaye, P. Marschner, D. V. Murphy, E. A. Stockdale, and K. W. T. Goulding, “The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure,” Soil Biol. Biochem. 37, 1726–1737 (2005).

    Article  Google Scholar 

  20. I. Fernandez, A. Cabaneiro, and A. Carballas, “Carbon mineralization dynamics in soils after wildfires in two Galician forests,” Soil Biol. Biochem. 31, 1853–1865 (1999).

    Article  Google Scholar 

  21. J. D. Gillis and G. W. Price, “Comparison of a novel model to three conventional models describing carbon mineralization from soil amended with organic residues,” Geoderma 160, 304–310 (2011).

    Article  Google Scholar 

  22. J. T. Gilmour, M. D. Clark, and G. C. Sigua, “Estimating net nitrogen mineralization from carbon dioxide evolution,” Soil Sci. Soc. Am. J. 49, 1398–1402 (1985).

    Article  Google Scholar 

  23. J. T. Gilmour, P. M. Gale, and R. J. Norman, “Crop residue turnover under rice culture,” in Agronomy Abstracts (American Society of Agronomy, Madison, WI, 1994).

    Google Scholar 

  24. H. W. Hunt, “A simulation model for decomposition in grasslands,” Ecology 58, 469–484 (1977).

    Article  Google Scholar 

  25. D. S. Jenkinson, “Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labeled ryegrass decomposing under field conditions,” J. Soil Sci. 28 (3), 424–434 (1977).

    Article  Google Scholar 

  26. D. S. Jenkinson and J. H. Rayner, “The turn-over of soil organic matter in some of the Rothamsted classical experiments,” Soil Sci. 123, 298–305 (1977).

    Article  Google Scholar 

  27. Y. Kuzyakov, “Sources of CO2 efflux from soil and review of partitioning methods,” Soil Biol. Biochem. 38 (3), 425–448 (2006).

    Article  Google Scholar 

  28. K. Lorenz, R. Lal, C. M. Preston, and K. G. J. Nierop, “Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules,” Geoderma 142, 1–10 (2007).

    Article  Google Scholar 

  29. M. Lützow, I. Kögtl-Knabner, K. Ekschmitt, H. Flessa, G. Guggenberger, E. Matzner, and B. Marschner, “SOM fractionation methods: relevance to functional pools and to stabilization mechanisms,” Soil Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

  30. S. Murayama, “Decomposition kinetics of straw saccharides and synthesis of microbial saccharides under field conditions,” J. Soil Sci. 35, 231–242 (1984).

    Article  Google Scholar 

  31. E. A. Paula, D. Harrisb, H. P. Collinsc, U. Schulthessa, and G. P. Robertsond, “Evolution of CO2 and soil carbon dynamics in biological Lyman aged, row-crop agroecosystems,” Appl. Soil Ecol. 11, 53–65 (1999).

    Article  Google Scholar 

  32. D. Pinskiy, A. Maltseva, and B. Zolotareva, “Role of mineral matrix composition and properties in the transformation of corn residues,” Eurasian J. Soil Sci. 3 (3), 172–181 (2014).

    Article  Google Scholar 

  33. J. Six and J. D. Jastrow, “Organic matter turnover,” in Encyclopedia of Soil Science, Ed. by R. Lal (CRC, Boca Raton, FL, 2006), Vol. 2.

    Google Scholar 

  34. I. Trinsoutrot, S. Recous, B. Bentz, M. Linères, D. Chèneby, and B. Nicolardot, “Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions,” Soil Sci. Soc. Am. J. 64, 918–926 (2000).

    Article  Google Scholar 

  35. P. A. W. van Hees, D. L. Jones, R. Finlay, D. L. Goldbold, and U. S. Lundstrom, “The carbon we do not see—the impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review,” Soil Biol. Biochem. 37, 1–13 (2005).

    Article  Google Scholar 

  36. R. P. Voroney, E. A. Paul, and D. W. Anderson, “Decomposition of wheat straw and stabilization of microbial products,” Can. J. Soil Sci. 69, 63–77 (1989).

    Article  Google Scholar 

  37. W. J. Wang, J. A. Baldock, R. C. Dalal, and P. W. Moody, “Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis,” Soil Biol. Biochem. 36, 2045–2058 (2004).

    Article  Google Scholar 

  38. R. T. Wright and J. T. Hobbie, “Use of glucose and acetate by bacteria and algae in aquatic ecosystems,” Ecology 47, 447–464 (1966).

    Article  Google Scholar 

  39. A. G. Zavarzina, “A mineral support and biotic catalyst are essential in the formation of highly polymeric soil humic substances,” Eurasian J. Soil Sci. 39 (1), 548–553 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Pinskii.

Additional information

Original Russian Text © D.L. Pinskii, A.N. Maltseva, B.N. Zolotareva, E.D. Dmitrieva, 2017, published in Pochvovedenie, 2017, No. 6, pp. 690–697.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinskii, D.L., Maltseva, A.N., Zolotareva, B.N. et al. Transformation kinetics of corn and clover residues in mineral substrates of different composition. Eurasian Soil Sc. 50, 681–687 (2017). https://doi.org/10.1134/S1064229317060096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317060096

Keywords

Navigation