Skip to main content
Log in

Acidity of KCl extracts from organic horizons of podzolic soils: Sources and possible equilibria

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Samples from the organic horizons of taiga podzolic soils of the Komi Republic were studied, and the possible equilibria established in the soil-KCl solution system (c = 1 mol/l) at the determination of the exchangeable acidity by the Sokolov method were examined. It was shown that the exchangeable acidity was due to aluminum(III) ions in 6% of the samples with pHKCl≤4 and due to the H+ ions formed during the dissociation of water-soluble organic acids in the other samples. A group of samples from the horizons in which Fe3+ ions could appreciably contribute to the soil acidity was discriminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Avdon’kin, Extended Abstract of Candidate’s Dissertation in Biology (Moscow, 2005).

  2. O. A. Amel’yanchik and L. A. Vorob’eva, “Acid Components of Water and Salt Extracts from Podzolic Soils,” Pochvovedenie, No. 3, 289–300 (2003) [Eur. Soil Sci. 36 (3), 266–276 (2003)].

  3. O. A. Amel’yanchik and L. A. Vorob’eva, “Indices and Methods for Assessing Soil Acidity and Lime Requirements,” Agrokhimiya, No. 2, 123–135 (1991).

  4. D. L. Askinazi, N. P. Karpinskii, and N. P. Remezov, “On the Nature of Soil Acidity,” Pochvovedenie, No. 9, 17–24 (1955).

  5. L. A. Vorob’eva, “On Acid and Base Components of Soil Solutions and Soil Extracts,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 3, 31–35 (1982).

  6. L. A. Vorob’eva, Theory and Methods of the Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  7. L. A. Vorob’eva, Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  8. E. A. Dmitriev, Mathematical Statistics in Soil Science (Izd. Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  9. I. V. Zaboeva, “Major Genetic Features of Podzolic Soils,” in Productivity of Podzolic Soils in the Northeastern Part of the Nonchernozemic Zone (Komi Nauchn. Tsentr UrO RAN, Syktyvkar, 1989), pp. 6–14 [in Russian].

    Google Scholar 

  10. I. V. Zaboeva, Soils and Land Resources of the Komi Autonomous Republic (Syktyvkar, 1975) [in Russian].

  11. I. V. Zaboeva and G. V. Rusanova, “Spatial Variability of Some Chemical and Physicochemical Properties in Strongly Podzolic and Gley-Podzolic Soils of the Komi Autonomous Republic,” Pochvovedenie, No. 12, 124–127 (1972).

  12. F. R. Zaidel’man, Gleyzation Process and Its Role in Soil Formation (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  13. S. V. Zonn, Iron in Soils (Genetic and Geographic Aspects) (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  14. V. V. Kanev, Parameters of Gleyzation and Podzolization in Soils Developing from Mantle Loams in the Northeast of the Russian Plain (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2001) [in Russian].

    Google Scholar 

  15. I. S. Kaurichev, I. M. Yashin, and V. A. Chernikov, Theory and Practice of the Method of Sorption Lysimeters in Ecological Studies (Moscow, 1996) [in Russian].

  16. A. P. Kreshkov, Fundamentals of Analytical Chemistry. Theoretical Bases. Qualitative Analysis (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  17. E. M. Lapteva, N. V. Grishchenko, and Zh. N. Kozachok, “Effect of the Degree of Hydromorphism on the Contents of Mobile Iron Forms in Bog-Podzolic Soils,” in Structural-Functional Organization of the Soil Cover and Soils in the Northeast of Europe (Nauka, St. Petersburg, 2001), pp. 85–91 [in Russian].

    Google Scholar 

  18. Yu. Yu. Lur’e, Analytical Chemistry Handbook (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  19. M. I. Makarov and N. P. Nedbaev, “Effect of Acid Rains on the Mobility of Organic Matter in Forest Soils,” Pochvovedenie, No. 8, 111–118 (1994).

  20. D. S. Orlov, “Debatable Problems of Modern Soil Chemistry,” Pochvovedenie, No. 3, 375–382 (2001) [Eur. Soil Sci. 34 (3), 336–341 (2001)].

  21. D. S. Orlov, Soil Chemistry (Izd. Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  22. Soils of the Komi Autonomous Soviet Socialist Republic (Izd. Akad. Nauk SSSR, Moscow, 1958) [in Russian].

  23. Soils of the Pechora Industrial Region (Nauka, Moscow-Leningrad, 1965) [in Russian].

  24. Field Guide of Soil Excursion. Forest Zone with Seasonally Frozen Soils (Syktyvkar, 2002), [in Russian].

  25. M. A. Ryazanov, E. D. Lodygin, V. A. Beznosikov, and D. A. Zlobin, “Evaluation of the Acid-Base Properties of Fulvic Acids Using pK Spectroscopy,” Pochvovedenie, No. 8, 934–941 (2001) [Eur. Soil Sci. 34 (8), 930–837 (2001)].

  26. T. A. Sokolova, Chemical Foundations of Amelioration of Acid Soils. Study Manual (Izd. Mosk. Gos. Univ., Moscow, 1993) [in Russian].

    Google Scholar 

  27. T. A. Sokolova, T. Ya. Dronova, I. I. Tolpeshta, and S. E. Ivanova, Interaction of Forest Loamy Podzolic Soils with Model Acid Rains and Acid-Base Buffering of Podzolic Soils (Izd. Mosk. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  28. M. M. Umarov and I. V. Aseeva, “Free Amino Acids in Soil Soils of the Soviet Union,” Pochvovedenie, No. 10, 108–111 (1971).

  29. N. N. Ushakova, A Course of Analytical Chemistry for Soil Scientists (Izd. Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  30. R. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge Univ. Press, London, 1939).

    Google Scholar 

  31. L. N. Frolova, “Specific Features of Soil Formation on Cutting Areas in Spruce Forests of the Komi Republic,” in Forest and Soil (Krasnoyarsk. Knizhn. Izd., Krasnoyarsk, 1968), pp. 253–259 [in Russian].

    Google Scholar 

  32. E. V. Shamrikova, “Acid and Mineral Components Determining the Exchangeable Acidity in Mineral Horizons of Taiga Soils of the Komi Republic,” Pochvovedenie, No. 2, 183–192 (2008) [Eur. Soil Sci. 41 (2), 163–170 (2008)].

  33. E. V. Shamrikova, T. A. Sokolova, and I. V. Zaboeva, “Identification of Buffer Reactions Occurring in the Course of Acid-Base Titration of Water Suspensions from Virgin and Plowed Podzolic Soils,” Pochvovedenie, No. 4, 412–423 (2002) [Eur. Soil Sci. 35 (4), 363–373 (2002)].

  34. E. V. Shamrikova, T. A. Sokolova, and I. V. Zaboeva, “The Acid-Base Buffering in Organic Horizons of Podzolic and Bog-Podzolic Soils in the Komi Republic,” Pochvovedenie, No. 7, 714–723 (2003) [Eur. Soil Sci. 36 (7), 714–723 (2003)].

  35. E. V. Shamrikova, T. A. Sokolova, and I. V. Zaboeva, Acid-Base Buffering of Podzolic and Bog-Podzolic Soils in the Northeast of European Russia (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  36. E. V. Shamrikova, T. A. Sokolova, and I. V. Zaboeva, “Forms of Acidity and Base Buffering in Mineral Horizons of Podzolic and Bog-Podzolic Soils in the Northeast of European Russia,” Pochvovedenie, No. 9, 958–966 (2003) [Eur. Soil Sci. 36 (9), 958–966 (2003)].

  37. S. Argen, “A Study of Unfractionated DOC and Its Aluminium Binding,” Proc. 3rd Nordic Symp. on Humic Substances, August, Turku, Finland, 1991.

  38. S. Argen and G. Jacks, “Aluminium from Two Glacial Tills—Flows and Retention Mechanisms,” Aqua Fenncica, No. 21, 29–37 (1991).

  39. L. J. Evans, “Some Aspects of the Chemistry of Aluminum in Podzolic Soils,” Comm. Soil Sci. Plant Nutr. 19(7–12), 793–803 (1988).

    Article  Google Scholar 

  40. T. R. Fox and N. B. Comerford, “Low-Molecular-Weight Organic Acids in Selected Forest Soils of the South-Eastern USA,” Soil Sci. Soc. Am. J. 54(4), 1139–1144 (1990).

    Google Scholar 

  41. J. Gerke, “Aluminum Complexation by Humic Substances and Aluminum Species in the Soil Solution,” Geoderma 63, 165–175 (1994).

    Article  Google Scholar 

  42. Humic Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization, G. R. Aiken, D. M. Mc Knight, R. L. Wershaw et al. (Eds.) (John Wiley, N.Y., 1985), 692 p.

    Google Scholar 

  43. B. Jansen, K. G. J. Nierop, and J. M. Verstraten, “Mobility of Fe(II), Fe(III) and Al in Acidic Forest Soils Mediated by Dissolved Organic Matter: Influence of Solution pH and Metal/Organic Carbon Ratios,” Geoderma 114(1–2), 323–340 (2003).

    Article  Google Scholar 

  44. S. Kortly and L. Sucha, Handbook of Chemical Equilibria in Analytical Chemisty (Ellis Horwood, Chichester, UK, 1985).

    Google Scholar 

  45. A. J. Krzyszowska, M. J. Blaybock, G. F. Vance, and M. B. David, “Ion-Chromatographic Analysis of Low Molecular Weight Organic Acids in Spodosol Forest Floor Solution,” Soil Sci. Soc. Am. J. 60(5), 1565–1571 (1996).

    Google Scholar 

  46. K. A. B. Logan, M. J. S. Floate, and A. D. Ironside, “Determination of Exchangeable Aluminium in Hill Soils. 2. Exchangeable Aluminium. Commun.,” Soil Sci. Plant Anal. 16(3), 309 (1985).

    Article  Google Scholar 

  47. U. S. Lundstrom, N. Van Breemen, D. C. Bain, P. A. W. Van Hees, et al., “Advances in Understanding the Podzolization Process Resulting from a Multidisciplinary Study of Three Coniferous Forest Soils in the Nordic Countries,” Geoderma 94, C. 335–353 (2000).

    Article  Google Scholar 

  48. A. E. Martell and R. J. Motekaitis, The Determination and Use of Stability Constants (VCH Publishers Inc., New York, 1988).

    Google Scholar 

  49. F. S. Mowat and K. J. Bundy, “A Mathematical Algorithm to Identify Toxicity and Prioritize Pollutants in Field Sediments,” Chemosphere 49(Iss. 5), 499–513 (2002).

    Article  Google Scholar 

  50. A. A. Pohlman and J. G. McColl, “Soluble Organics Form Forest Litter and Their Metal Dissolution,” Soil Sci. Soc. Am. J. 52, 265–271 (1988).

    Google Scholar 

  51. N. Rampazzo and E. H. Winteried, “Changes in Chemistry and Mineralogy of Forest Soil by Acid Rain,” Water, Air, Soil Pollut. 61, 209–220 (1992).

    Article  Google Scholar 

  52. E. V. Shamrikova, M. A. Ryazanov, and E. V. Vanchikova, “Acid-Base Properties of Water-Soluble Organic Matter of Forest Soils, Studied by the pK-Spectroscopy Method,” Chemosphere 65, 1426–1431 (2006).

    Article  Google Scholar 

  53. M. Tani, K. S. Shida, K. Tsutsuki, and R. Kondo, “Determination of Water-Soluble Low-Molecular-Weight Organic Acids in Soils by Ion Chromatography,” Soil Sci. Plant Nutr. 47(2), 387–397 (2001).

    Google Scholar 

  54. G. W. Thomas and W. L. Hargrove, “The Chemistry of Soil Acidity,” in Soil Acidity and Liming (Agronomy Monograph, Madison, USA), No. 12, 3–56 (1984).

    Google Scholar 

  55. P. A. W. Van Hees, U. S. Lundstrom, and R. Giesler, “Low-Molecular Weight Organic Acids and Their Al-Complexes in Soil Solution—Composition Distribution and Seasonal Variation in Three Podzolized Soils,” Geoderma 94, 173–200 (2000).

    Article  Google Scholar 

  56. P. A. W. Van Hees and U. S. Lundstrom, “Equilibrium Models of Aluminium and Iron Complexation with Different Organic Acids in Soil Solution,” Ceoderma 94, 201–221 (2000).

    Google Scholar 

  57. P. A. W. Van Hees, E. Tipping, and U. S. Lundstrom, “Aluminium Speciation in Forest Soil Solution—Modeling the Contribution of Low Molecular Weight Organic Acids,” Sci. Total Environ. 278, 215–229 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Shamrikova.

Additional information

Original Russian Text © E.V. Shamrikova, 2010, published in Pochvovedenie, 2010, No. 7, pp. 811–818.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamrikova, E.V. Acidity of KCl extracts from organic horizons of podzolic soils: Sources and possible equilibria. Eurasian Soil Sc. 43, 757–764 (2010). https://doi.org/10.1134/S1064229310070057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229310070057

Keywords

Navigation