Skip to main content
Log in

Ideal Quantum Wires in a Magnetic Field: Self-Organization Energy, Critical Sizes, and Controllable Conductivity

  • Nanoelectronics
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The concept of an ideal quantum wire as a one-dimensional heterostructure whose spectrum contains exactly one bound level of the transverse dimension-quantized motion is introduced. The admissible range of the radii of such a wire is calculated. It is shown that only the quantization of longitudinal levels of motion makes it possible to calculate the energy released (absorbed) upon the fusion of two wires of the same material. In the traditional approach of a continuous longitudinal spectrum, this effect cannot be determined in principle. The influence of a longitudinal magnetic field on the spectrum of ideal wires is considered. It is established that a quantizing magnetic field destroys the unique level with negative energy (relative to the bottom of the continuous spectrum of the environment) but creates a family of positive bound Landau levels. In this case, the density of states in the wire is completely determined by the magnetic field, which makes it possible to control its spectrum and conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998).

    Google Scholar 

  2. A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, and S. A. Rykov, Physics of Low-Dimensional Systems (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  3. A. A. Barybin, V. I. Tomilin, and V. I. Shapovalov, Physicotechnological Grounds of Macro-, Micro-, and Nanoelectronics (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  4. M. Peshkin and A. Tonomura, The Aharonov–Bohm Effect (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  5. G. N. Afanas’ev, “Old and new problems in the theory of the Aharonov–Bohm Effect,” Fiz. Elem. Chastits At. Yadra 21, 172 (1990).

    Google Scholar 

  6. L. Hackermüller, K. Hornberger, and B. Brezger, et al., Lett. Nature 427, 711 (2004).

    Article  Google Scholar 

  7. D. Bowmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).

    Book  Google Scholar 

  8. Y. Kondo and K. Takayanagy, Phys. Rev. Lett. 79, 3455 (1997).

    Article  Google Scholar 

  9. J. Burki, C. A. Stafford, and D. L. Stein, Phys. Rev. Lett. 95, 090601 (2005).

    Article  Google Scholar 

  10. V. Schmidt, J. V. Wittemann, S. Senz, and U. Gosele, Adv. Mater. 21, 2681 (2009).

    Article  Google Scholar 

  11. M. M. Rojo, O. C. Calero, and A. F. Lopeandia, et al., Nanoscale, No. 5, 11526 (2013).

    Article  Google Scholar 

  12. V. L. Popov, Mechanics of Contact Interaction and Physics of Friction (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  13. A. M. Mandel’, V. B. Oshurko, G. I. Solomakho, et al., Usp. Sovr. Radioelektron., No. 8, 18 (2015).

    Google Scholar 

  14. V. P. Kurbatsky, A. V. Korotun, A. V. Babich, and V. V. Pogosov, Phys. Solid State 51, 2520 (2009).

    Article  Google Scholar 

  15. V. A. Harutyunyan, Phys. Solid State 52, 1744 (2010).

    Article  Google Scholar 

  16. S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Opt. Zh. 82, (5), 3 (2015).

    Google Scholar 

  17. S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Opt. Zh. 82, (5), 11 (2015).

    Google Scholar 

  18. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Dispersion, Reactions, and Disintegrations in the Nonrelativistic Quantum Mechanics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  19. A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Elektromagn. Volny Elektron. Sist., No. 6, 67 (2014).

    Google Scholar 

  20. A. M. Mandel’, V. B. Oshurko, G. I. Solomakho, and A. A. Sharts, J. Commun. Techn. Electron. 60, 1117 (2015).

    Article  Google Scholar 

  21. S. N. Grigor’ev, A. M. Mandel’, V. B. Oshurko, and G. I. Solomakho, Tech. Phys. Lett. 24, 1176 (2011).

    Article  Google Scholar 

  22. C. Pryor, M. Flatte, J. Pingenot, and D. Amrit, g-Factor in Quantum Dots (2007). http://online.kitp.ucsb.edu/ online/spintr06/pryor/pdf/Pryor_KITP.pdf.

    Google Scholar 

  23. V. N. Rodionov, G. A. Kravtsova, and A. M. Mandel’, Teor. Mat. Fiz. 164, 157 (2010).

    Article  Google Scholar 

  24. A. I. Ansel’m, Introduction to the Theory of Semiconductors (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mandel’.

Additional information

Original Russian Text © A.M. Mandel’, V.B. Oshurko, G.I. Solomakho, K.G. Solomakho, 2018, published in Radiotekhnika i Elektronika, 2018, Vol. 63, No. 3, pp. 268–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandel’, A.M., Oshurko, V.B., Solomakho, G.I. et al. Ideal Quantum Wires in a Magnetic Field: Self-Organization Energy, Critical Sizes, and Controllable Conductivity. J. Commun. Technol. Electron. 63, 245–253 (2018). https://doi.org/10.1134/S1064226918030129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918030129

Navigation