Skip to main content
Log in

The Fermi-Ulam problem and sticking mode

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Analysis of the dynamics of a point classical particle upon its elastic reflection from a single periodically oscillating wall and in the scheme of dynamic billiards with reflections from the stationary and oscillating wall is carried out. It is demonstrated that, in the case of a single wall, the particle can stick to the wall being virtually localized on it during the half-period of oscillation and periodically reflected therefrom. It is shown that, upon varying the parameters of the problem in the range corresponding to the variation of the consecutive number of reflections from one and the same wall, the dependence of the particle velocity on these parameters has discontinuities of the derivative. For the scheme of dynamic billiard, we discuss stable regimes of various types with a constant kinetic energy of the particle and the modes of deterministic chaos. In the latter case, the presence of aforementioned discontinuities is also substantial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fermi, Phys. Rev. 75, 1169 (1949).

    Article  ADS  MATH  Google Scholar 

  2. S. M. Ulam, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 3 (Univ. of California Press, Berkeley, 1961), Vol. 3, p. 315.

    Google Scholar 

  3. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York, 1983).

    Book  MATH  Google Scholar 

  4. L. D. Pustyl’nikov, Russ. Math. Surv. 50(1), 145 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Yu. Loskutov, Phys.-Usp. 50, 939 (2007).

    Article  ADS  Google Scholar 

  6. V. Gelfreich, V. R. Kedar, K. Shah, and D. Turaev, Phys. Rev. Lett. 106, 074 101 (2011).

    Article  Google Scholar 

  7. H. G. Schuster, Deterministic Chaos: An Introduction (Physik, Weinheim, 1984).

    MATH  Google Scholar 

  8. Processes and Apparatuses of Chemical Technology, Ed. by A. M. Kutepov (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  9. N. N. Rosanov, Phys. Rev. A 88, 063 616 (2013).

    Article  Google Scholar 

  10. N. N. Rozanov and G. B. Sochilin, J. Exp. Theor. Phys. 118(1), 124 (2014).

    Article  ADS  Google Scholar 

  11. N. N. Rosanov, Phys. Rev. A 89, 035 601 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Rosanov.

Additional information

Original Russian Text © V.D. Vinokurova, N.N. Rosanov, 2014, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 40, No. 21, pp. 21–28.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinokurova, V.D., Rosanov, N.N. The Fermi-Ulam problem and sticking mode. Tech. Phys. Lett. 40, 946–948 (2014). https://doi.org/10.1134/S1063785014110145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785014110145

Keywords

Navigation