Skip to main content
Log in

Non-Ostwald Behavior of Disperse Systems in Evaporation and Crystallization of Droplets of Water–Organic Solutions

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

This Letter describes experiments with aqueous solutions of organic substances demonstrating a non-Ostwald behavior under which the stability of small droplets during evaporation and crystallization is higher than that of large droplets. Such a behavior has been described earlier for aqueous solutions of some inorganic salts. It is shown that the non-Ostwald behavior has a common thermodynamic nature with Ostwald ripening and should be observed in disperse systems with a complex chemical composition. The features of reproduction of the non-Ostwald behavior related to the surface activity of organic substances in aqueous solutions are described. The studied regularities can be used upon preparation of solutions of organic and bioorganic substances with a concentration significantly higher than their solubility under normal conditions, as well as for the formation of narrow size distributions in different spray processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. M. Littringer, R. Paus, A. Mescher, H. Schroettner, P. Walzel, and N. A. Urbanetz, Powder Technol. 239, 162 (2013). https://doi.org/10.1016/j.powtec.2013.01.065

    Article  Google Scholar 

  2. Yu. Yu. Tarasevich and D. M. Pravoslavnova, Tech. Phys. 52, 159 (2007). https://doi.org/10.1134/S106378420702003X

    Article  Google Scholar 

  3. T. A. Yakhno, V. V. Kazakov, O. A. Sanina, A. G. Sanin, and V. G. Yakhno, Tech. Phys. 55, 929 (2010). https://doi.org/10.1134/S1063784210070030

    Article  Google Scholar 

  4. Droplet Wetting and Evaporation from Pure to Complex Fluids, Ed. by D. Brutin (Academic, Amsterdam, 2015), p. 435.

    Google Scholar 

  5. A. Ostafin and K. Landfester, Nanoreactor Engineering for Life Science and Medicine (Artech House, Boston, 2009).

    Google Scholar 

  6. O. G. Penyaz’kov, V. I. Saverchenko, and S. P. Fisenko, Tech. Phys. Lett. 39, 168 (2013). https://doi.org/10.1134/S1063785013020132

    Article  ADS  Google Scholar 

  7. G. Strotos, M. Gavaises, A. Theodorakakos, and G. Bergeles, Fuel 90, 1492 (2011). https://doi.org/10.1016/j.fuel.2011.01.017

    Article  Google Scholar 

  8. V. B. Fedoseev and E. N. Fedoseeva, JETP Lett. 97, 408 (2013). https://doi.org/10.1134/S0021364013070059

    Article  ADS  Google Scholar 

  9. E. K. Titaeva and V. B. Fedoseev, Crystallogr. Rep. 59, 437 (2014). https://doi.org/10.1134/S1063774514030195

    Article  ADS  Google Scholar 

  10. V. B. Fedoseev and M. V. Maksimov, JETP Lett. 101, 390 (2015). https://doi.org/10.1134/S0021364015060053

    Article  ADS  Google Scholar 

  11. V. B. Fedoseev, Nelin. Dinam. 13 (2), 195 (2017). https://doi.org/10.20537/nd1702004

    Article  Google Scholar 

  12. V. M. Burlakov, M. S. Bootharaju, T. M. D. Besong, O. M. Bakr, and A. Goriely, arXiv: 1412.6280v2 [physics.chem-ph] (2014), p. 11.

  13. I. Sugimoto, J. Soc. Photogr. Sci. Technol. Jpn. 46, 306 (1983).

    Google Scholar 

  14. I. Leizerson, S. G. Lipson, and A. V. Lyushnin, Nature (London, U. K.) 422, 395 (2003). https://doi.org/10.1038/422395b

    Article  ADS  Google Scholar 

  15. K. Heinig, B. Schmidt, M. Strobel, and H. Bernas, MRS Proc. 650, R9.6/O14.6 (2000). https://doi.org/10.1557/PROC-650-R9.6/O14.6

  16. A. Singh, R. Kumari, V. Kumar, L. Krishnia, Z. Naqvi, A. K. Panwar, U. M. Bhatta, A. Ghosh, P. V. Satyam, and P. K. Tyagi, Appl. Surf. Sci. 360, 1003 (2016). https://doi.org/10.1016/j.apusc.2015.11.110

    Article  ADS  Google Scholar 

  17. G. C. Rizza, M. Strobel, K. H. Heinig, and H. Bernas, Nucl. Instrum. Methods Phys. Res., Sect. B 178, 78 (2001). https://doi.org/10.1016/S0168-583X(01)00496-7

    Article  Google Scholar 

  18. N. M. Zadymova and G. A. Arshakyan, Colloid. J. 76, 25 (2014). https://doi.org/10.1134/S1061933X14010165

    Article  Google Scholar 

  19. S. Lucas and P. Moskovkin, Thin Solid Films 518, 5355 (2010). https://doi.org/10.1016/j.tsf.2010.04.064

    Article  ADS  Google Scholar 

  20. V. B. Fedoseev, A. V. Shishulin, E. K. Titaeva, and E. N. Fedoseeva, Phys. Solid State 58, 2095 (2016). https://doi.org/10.1134/S1063783416100152

    Article  ADS  Google Scholar 

  21. Yu. S. Raguzina and E. N. Fedoseeva, in Proceedings of the 11th All-Russian School-Conference of Young Scientists on Theoretical and Experimental Chemistry of Liquid-Phase Systems, Krestov’s Readings, Ivanovo,2017, p. 163.

  22. E. S. Lobodina and V. I. Skudaev, Vestn. Perm. Politekh. Univ., Khim. Tekhnol. Biotekhnol. 8, 239 (2009).

    Google Scholar 

  23. W. Ostwald, Zeitschr. Phys. Chem. 22, 289 (1897).

    Google Scholar 

  24. V. B. Fedoseev and E. N. Fedoseeva, Inzh. Fiz. Zh. 92, 2229 (2019). https://doi.org/10.1007/s10891-019-02033-2

    Article  Google Scholar 

Download references

Funding

This work was performed as a part of a state order to the Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences and financially supported by the Russian Foundation for Basic Research, project no. 18-08-01356-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Fedoseev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseeva, E.N., Fedoseev, V.B. Non-Ostwald Behavior of Disperse Systems in Evaporation and Crystallization of Droplets of Water–Organic Solutions. Tech. Phys. 65, 839–845 (2020). https://doi.org/10.1134/S1063784220060110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060110

Navigation