Skip to main content
Log in

Plastic deformation macrolocalization during serrated creep of an aluminum-magnesium Al-6 wt % Mg alloy

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The nonlinear dynamics of the space-time structure of macrolocalized deformation is studied by a set of high-speed in situ methods under the conditions of serrated creep in an aluminum-magnesium Al-6 wt % Mg alloy at room temperature. Macroscopic deformation jumps with an amplitude of several percent are detected in the creep curve of this alloy. It is found that a complex space-time structure of macrolocalized deformation bands moving in a correlated manner forms spontaneously in the material during the development of a deformation jump. The difference between the observed picture of deformation bands and the well-known Portevin-Le Chatelier classification of deformation bands is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. von Gerstner, Ann. Chim. Phys. 26, 269 (1832).

    Article  Google Scholar 

  2. F. Savart, Ann. Chim. Phys. 65, 337 (1837).

    Google Scholar 

  3. A. Portevin and F. Le Chatelier, Seances Acad. Sci. 176, 507 (1923).

    Google Scholar 

  4. J. F. Bell, Experimental Foundations of Solid Mechanics (Springer, New York, 1973).

    Book  Google Scholar 

  5. A. W. McReynolds, Metall. Trans. No. 1, 32 (1949).

    Google Scholar 

  6. R. L. Klueh and J. F. King, Scr. Metall. 13, 205 (1979).

    Article  Google Scholar 

  7. R. L. Klueh and J. F. King, J. Nucl. Mater. 98, 173 (1981).

    Article  ADS  Google Scholar 

  8. R. L. Klueh, Mater. Sci. Eng. 54, 65 (1982).

    Article  Google Scholar 

  9. V. N. Rozhanskii, Usp. Fiz. Nauk 65, 387 (1958).

    Google Scholar 

  10. J. Weiss and J.-R. Grasso, J. Phys. Chem. B 101, 6113 (1997).

    Article  Google Scholar 

  11. V. V. Shpeizman, H. H. Peschanskaya, and V. A. Stepanov, Sov. Phys. Solid State 26, 1202 (1984).

    Google Scholar 

  12. V. V. Shpeizman, N. N. Peschanskaya, and B. I. Smirnov, Phys. Solid State 40, 634 (1998).

    Article  ADS  Google Scholar 

  13. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Unelasticity of Crystals (Nauka, Moscow, 1985).

    Google Scholar 

  14. G. W. Ardley and A. H. Sottrel, Proc. R. Soc. London, Ser. A 219, 328 (1953).

    Article  ADS  Google Scholar 

  15. A. R. Kurlaev and Yu. V. Sidorin, Dokl. Akad. Nauk 311, 609 (1990).

    Google Scholar 

  16. T. T. Mogil’nikova, Vopr. At. Nauki Tekh., No. 6, 42 (2009).

    Google Scholar 

  17. N. N. Peschanskaya, P. N. Yakushev, V. M. Egorov, V. A. Bershtein, and L. Bokobza, Phys. Solid State 44, 1684 (2002).

    Article  ADS  Google Scholar 

  18. L. I. Danilenko, M. V. Zinov’ev, and V. A. Koval’, Prib. Tekh. Eksp., No. 2, 213 (1973).

    Google Scholar 

  19. H. Neuhauser, Dislocation in Solids, Ed. by F. R. N. Nabarro (North-Holland, Amsterdam, 1983), Vol. 6, pp. 319–440.

  20. A. Hampel and H. Neuhauser, Phys. Status Solidi A 100, 441 (1987).

    Article  Google Scholar 

  21. V. I. Danilov, S. V. Konovalov, S. V. Zhuravleva, L. B. Zuev, and V. E. Gromov, Tech. Phys. 50, 376 (2005).

    Article  Google Scholar 

  22. L. B. Zuev and S. A. Barannikova, Strength Pnysics and Experimental Mechanics (Nauka, Novosibirsk, 2011).

    Google Scholar 

  23. Y. Estrin and L. P. Kubin, Continuum Models for Materials with Microstructure, Ed. by H.-B. Muhlhaus (Wiley, New York, 1995), pp. 395–450.

  24. E. Rizzi and P. Hahner, Int. J. Plast. 20, 121 (2004).

    Article  MATH  Google Scholar 

  25. A. J. Yilmaz, Mater Sci. 46, 3766 (2011).

    Article  ADS  Google Scholar 

  26. M. V. Klassen-Neklyudova, Zh. Russ. Fiz.-Khim. Obshch., Fiz. 60, 373 (1928).

    Google Scholar 

  27. A. A. Shibkov, R. Yu. Kol’tsov, M. A. Zheltov, A. V. Shuklinov, and M. A. Lebedkin, Izv. Ross. Akad. Nauk, Ser. Fiz. 70, 1372 (2006).

    Google Scholar 

  28. A. A. Shibkov, A. E. Zolotov, and M. A. Zhltov, Izv. Ross. Akad. Nauk, Ser. Fiz. 76, 97 (2012).

    Google Scholar 

  29. A. A. Shibkov and A. E. Zolotov, JETP Lett. 90, 370 (2009).

    Article  ADS  Google Scholar 

  30. L. P. Kubin and Y. Estrin, Acta Metall. 33, 397 (1985).

    Article  Google Scholar 

  31. P. G. McCormick, Acta Metall. 20, 351 (1972).

    Article  MathSciNet  Google Scholar 

  32. A. A. Shibkov, M. A. Lebedkin, M. A. Zheltov, V. V. Skvortsov, R. Yu. Kol’tsov, and A. V. Shuklinov, Zavod. Lab. 71(7), 20 (2005).

    Google Scholar 

  33. A. A. Shibkov, A. A. Mazilkin, S. G. Ppotasova, D. V. Mikhlik, A. E. Zolotov, M. A. Zheltov, and A. V. Shuklinov, Deform. Razrushenie Mater., No. 5, 24 (2008).

    Google Scholar 

  34. K. Chihab, Y. Estrin, L. P. Kubin, and J. Vergnol, Scr. Metall. 21, 203 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shibkov.

Additional information

Original Russian Text © A.A. Shibkov, A.E. Zolotov, M.A. Zheltov, A.A. Denisov, M.F. Gasanov, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 4, pp. 40–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibkov, A.A., Zolotov, A.E., Zheltov, M.A. et al. Plastic deformation macrolocalization during serrated creep of an aluminum-magnesium Al-6 wt % Mg alloy. Tech. Phys. 59, 508–514 (2014). https://doi.org/10.1134/S1063784214040227

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214040227

Keywords

Navigation