Skip to main content
Log in

Pulsed laser deposition of thin-film coatings using an antidroplet shield

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation of thin-film coatings of molybdenum diselenide is studied during the deposition of a laser-induced material flux using a shield that is placed on the path of the expansion of this flux in order to trap the droplet fraction. To increase the efficiency of atomic scattering into the shadow zone (behind the shield), deposition is carried out in an inert gas (argon). As the argon pressure increases to 2 Pa, low-density coatings with a developed surface relief form in the shadow zone. When a negative bias voltage is applied to a substrate, the quality of the coating increases substantially. Numerical experiments based on the combination of two computer models that describe physical processes on the atomic level using Monte Carlo methods are performed to reveal the factors that affect the thickness, chemical composition, and structure of the MoSe x coatings deposited in the shadow zone. The results of calculating the dynamics of the laser-induced atomic flux in a chamber with a shield are used to simulate the coating growth. The deposition of a scattered atomic flux under conditions of surface bombardment by incident particles is shown to substantially increase the coating density and to smooth away the surface relief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Fominski, V. N. Nevolin, R. I. Romanov, et al., J. Appl. Phys. 89, 1449 (2001).

    Article  ADS  Google Scholar 

  2. V. Yu. Fominski, V. N. Nevolin, R. I. Romanov, et al., Tribol. Lett. 17, 289 (2004).

    Article  Google Scholar 

  3. V. Yu. Fominski, R. I. Romanov, A. V. Gusarov, et al., Surf. Coat. Technol. 201, 7813 (2007).

    Article  Google Scholar 

  4. S. D. Walck, J. S. Zabinski, M. S. Donley, et al., Surf. Coat. Technol. 62, 412 (1993).

    Article  Google Scholar 

  5. D. V. Shtansky, T. A. Lobova, V. Yu. Fominski, et al., Surf. Coat. Technol. 183, 328 (2004).

    Article  Google Scholar 

  6. V. N. Nevolin, V. Yu. Fominskii, A. G. Gnedovets, et al., Zh. Tekh. Fiz. 79(1), 118 (2009) [Tech. Phys. 54, 117 (2009)].

    Google Scholar 

  7. A. G. Gnedovets, A. V. Gusarov, and I. Smurov, J. Phys. D: Appl. Phys. 32, 2162 (1999).

    Article  ADS  Google Scholar 

  8. T. E. Itina, W. Marine, and M. Autric, J. Appl. Phys. 82, 3536 (1997).

    Article  ADS  Google Scholar 

  9. A. A. Morozov, Z. Geretovszky, and T. Szorenyi, J. Phys. D: Appl. Phys. 41, 015303 (2008).

    Article  ADS  Google Scholar 

  10. J. Krása, A. Lorusso, D. Doria, et al., Plasma Phys. Control. Fusion 47, 1339 (2005).

    Article  ADS  Google Scholar 

  11. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  12. A. Bogaerts, M. van Straaten, and R. Gijbels, J. Appl. Phys. 77, 1868 (1995).

    Article  ADS  Google Scholar 

  13. J. W. Mayer, L. Eriksson and J. A. Davis, Ion Implantation in Semiconductors (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

  14. T. Karabacak, G.-C. Wang, and T.-M. Lu, J. Appl. Phys. 94, 7723 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Fominskii.

Additional information

Original Russian Text © V.N. Nevolin, V.Yu. Fominskii, A.G. Gnedovets, R.I. Romanov, 2009, published in Zhurnal Tekhnicheskoĭ Fiziki, 2009, Vol. 79, No. 11, pp. 120–127.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevolin, V.N., Fominskii, V.Y., Gnedovets, A.G. et al. Pulsed laser deposition of thin-film coatings using an antidroplet shield. Tech. Phys. 54, 1681–1688 (2009). https://doi.org/10.1134/S1063784209110218

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784209110218

PACS numbers

Navigation