Skip to main content
Log in

Effect of thermal nonlinearity in high-absorption media on the parameters of the photoacoustic signal detected by the gas microphone method: The fundamental and second harmonics

  • Acoustics, Acoustoelectronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A perturbation theory is put forward that describes the effect of thermal nonlinearity due to the temperature dependence of the thermophysical parameters of high-absorption systems with a low thermal conductivity on the parameters of the photoacoustic signal detected by the gas microphone technique. It is found that the dependence of the photoacoustic signal amplitude on incident beam intensity I 0 stems from the dependence of the illuminated surface temperature on I 0. This dependence is a complicated function instead of being a simple quadratic function as was expected. In the limiting cases (μsβ ≪ 1 and μsβ ≫ 1), this contribution to the photoacoustic signal amplitude is described by simple expressions, which are convenient for determining the thermal coefficients of the thermophysical parameters of the medium. It is found that the thermal nonlinearity significantly affects the photoacoustic signal phase in the frequency region meeting the condition μsβ ∼ 1. In the above limiting cases, its effect is insignificant. A theory of generation of the photoacoustic signal second harmonic is proposed. The second harmonic is related to the temperature dependence of the thermophysical parameters of the buffer gas and sample. It is shown that the amplitude of the signal is a quadratic function of the incident beam intensity and varies with its frequency as ω−3/2 for μsβ ≫ 1 and ω−5/2 for μsβ ≪ 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Opsal, A. Rosenswaig, and L. D. Willenborg, Appl. Opt. 22, 3169 (1983).

    Article  ADS  Google Scholar 

  2. U. Madvaliev, T. Kh. Salikhov, and D. M. Sharifov, Zh. Tekh. Fiz. 74(2), 17 (2004) [Tech. Phys. 49, 158 (2004)].

    Google Scholar 

  3. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; AIP, New York, 1993).

    Google Scholar 

  4. A. Rosenswaig and A. Gersho, J. Appl. Phys. 47, 64 (1976).

    Article  ADS  Google Scholar 

  5. F. A. McDonald and G. C. Wetsel, Jr., in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (Academic, New York, 1988), Vol. 18, pp. 168–277.

    Google Scholar 

  6. L. V. Burmistrova, A. A. Karabutov, O. V. Rudenko, and F. B. Cherepetskaya, Akust. Zh. 25, 616 (1979) [Sov. Phys. Acoust. 25, 348 (1979)].

    Google Scholar 

  7. T. A. Dunina, S. V. Egerev, L. M. Lyamshev, and K. A. Naugol’nykh, Akust. Zh. 25, 622 (1979) [Sov. Phys. Acoust. 25, 411 (1979)].

    Google Scholar 

  8. L. M. Lyamshev and K. A. Naugol’nykh, Akust. Zh. 27, 641 (1981) [Sov. Phys. Acoust. 27, 357 (1981)].

    ADS  Google Scholar 

  9. G. V. Ostrovskaya, Zh. Tekh. Fiz. 72(10), 95 (2002) [Tech. Phys. 47, 1299 (2002)].

    Google Scholar 

  10. G. V. Ostrovskaya, Zh. Tekh. Fiz. 72(12), 64 (2002) [Tech. Phys. 47, 1547 (2002)].

    Google Scholar 

  11. A. A. Bondarenko, A. K. Vologdin, and A. I. Kondrat’ev, Akust. Zh. 26, 828 (1980) [Sov. Phys. Acoust. 26, 467 (1980)].

    Google Scholar 

  12. A. Mandelis, A. Salnick, J. Opsal, and A. Rosenswaig, J. Appl. Phys. 85, 1811 (1999).

    Google Scholar 

  13. A. Salnick, J. Opsal, A. Rosenswaig, and A. Mandelis, Solid State Commun. 114, 133 (2000).

    Article  ADS  Google Scholar 

  14. N. Blombergen, Nonlinear Optics (Benjamin, New York, 1965; Mir, Moscow, 1966).

    Google Scholar 

  15. Y. N. Rajakarunanayake and H. K. Wickramasinghe, Appl. Phys. Lett. 48, 218 (1986).

    Article  ADS  Google Scholar 

  16. G. C. Wetsel and J. M. Spicer, Can. J. Phys. 64, 1269 (1986).

    ADS  Google Scholar 

  17. S. B. Peralta, H. H. Al-Khafaji, and A. W. Williams, Nondestr. Test. Eval. 6, 17 (1991).

    Google Scholar 

  18. C. Wang and P. Li, J. Appl. Phys. 49, 5713 (1993).

    Article  ADS  Google Scholar 

  19. O. Doka, A. Miklos, and A. Lorincz, Appl. Phys. A 48, 415 (1989).

    Article  ADS  Google Scholar 

  20. V. Gusev, A. Mandelis, and R. Bleiss, Int. J. Thermophys. 14, 321 (1993).

    Article  Google Scholar 

  21. V. Gusev, A. Mandelis, and R. Bleiss, Appl. Phys. A 57, 229 (1993).

    Article  ADS  Google Scholar 

  22. V. Gusev, A. Mandelis, and R. Bleiss, Mater. Sci. Eng., B 26, 111 (1994).

    Article  Google Scholar 

  23. K. L. Muratikov and A. L. Glazov, Zh. Tekh. Fiz. 71(6), 110 (2001) [Tech. Phys. 46, 749 (2001)].

    Google Scholar 

  24. K. L. Muratikov, A. L. Glazov, D. N. Rouz, and D. E. Dumar, Pis’ma Zh. Tekh. Fiz. 28(9), 48 (2002) [Tech. Phys. Lett. 28, 377 (2002)].

    Google Scholar 

  25. L. L. Vasil’ev and S. A. Tanaeva, Thermal Properties of Porous Materials (Nauka i Tekhnika, Minsk, 1971) [in Russian].

    Google Scholar 

  26. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

    Google Scholar 

  27. L. N. Novichenok and Z. P. Shul’man, Thermal Properties of Polymers (Nauka i Tekhnika, Minsk, 1971) [in Russian].

    Google Scholar 

  28. D. V. Ivanyukov and M. L. Fridman, Polypropylene (Khimiya, Moscow, 1974) [in Russian].

    Google Scholar 

  29. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnov, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © U. Madvaliev, T.Kh. Salikhov, D.M. Sharifov, 2006, published in Zhurnal Tekhnicheskoĭ Fiziki, 2006, Vol. 76, No. 6, pp. 87–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madvaliev, U., Salikhov, T.K. & Sharifov, D.M. Effect of thermal nonlinearity in high-absorption media on the parameters of the photoacoustic signal detected by the gas microphone method: The fundamental and second harmonics. Tech. Phys. 51, 765–776 (2006). https://doi.org/10.1134/S1063784206060132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784206060132

PACS numbers

Navigation