Skip to main content
Log in

Luminescence Properties of Sr2La8 – xTmx(GeO4)6O2 Apatites (x = 0.1–1.0) in the Visible and Short-Wave IR Spectral Ranges

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

For the first time, the Sr2La8 – xTmx(GeO4)6O2 (x = 0.1–1.0) solid solution with the apatite structure were synthesized by the solid-phase method, and their spectral–luminescence properties were studied. The prospects of using these compounds as phosphors in the visible and short-wave infrared ranges were demonstrated. The luminescence of Sr2La8 – xTmx(GeO4)6O2 germanates, which occurs under ultraviolet radiation, is characterized by the high purity of blue color; the chromaticity coordinates are close to commercially available phosphors. The Sr2La8 – xTmx(GeO4)6O2 compounds efficiently convert 808 nm laser radiation into a series of emission lines in the 1.3–2.2 μm spectral range, caused by sequential 3H4 → 3F4 and 3F4 → 3H6 transitions in Tm3+ ions. Germanate Sr2La7.6Tm0.4(GeO4)6O2 with a maximum emission intensity in the short-wave infrared region shows high thermal stability of luminescence in the 30–220°C range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid Infrared Laser Sources, Ed. by I. T. Sorokina and K. L. Vodopyanov (Springer, Berlin, 2003), p. 458.

    Google Scholar 

  2. B. Jean, T. Bende, and A. Fried, in Solid-State Mid Infrared Laser Sources, Ed. by I. T. Sorokina and K. L. Vodopyanov (Springer, Berlin, 2003), p. 530.

    Google Scholar 

  3. S. D. Jackson, Nat. Photon. 6, 423 (2012).

    Article  ADS  Google Scholar 

  4. S. Tanabe, Proc. SPIE 85, 4282 (2001).

    ADS  Google Scholar 

  5. J. Q. Hong, L. H. Zhang, M. Xu, and Y. Hang, Opt. Mater. Express 6, 1444 (2016).

    Article  ADS  Google Scholar 

  6. R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, Photon. Res. 4, 214 (2016).

    Article  Google Scholar 

  7. M. C. Falconi, D. Laneve, and F. Prudenzano, Fibers 5, 23 (2017).

    Article  Google Scholar 

  8. H. Cankaya, A. Tolga Gorgulu, A. Kurt, A. Speghini, M. Bettinelli, and A. Sennaroglu, Appl. Sci. 8, 333 (2018).

    Article  Google Scholar 

  9. T. J. White and D. Zhi Li, Acta Crystallogr., B 59, 1 (2003).

    Article  Google Scholar 

  10. M. Wierzbicka-Wieczorek, M. Göckeritz, U. Kolitsch, C. Lenz, and G. Giester, Eur. J. Inorg. Chem. 6, 948 (2015).

    Article  Google Scholar 

  11. P. R. Slater, J. E. H. Sansom, and J. R. Tolchard, Chem. Rec. 4, 373 (2004).

    Article  Google Scholar 

  12. Y. Higuchi, M. Sugawara, K. Onishi, M. Sakamoto, and S. Nakayama, Ceram. Int. 36, 955 (2010).

    Article  Google Scholar 

  13. C. Piccirillo and P. M. L. Castro, J. Environ. Manage. 193, 79 (2017).

    Article  Google Scholar 

  14. I. A. Neacsu, A. E. Stoica, B. S. Vasile, and E. Andronescu, Nanomaterials 9, 239 (2019).

    Article  Google Scholar 

  15. G. S. R. Raju, J. Y. Park, H. C. Jung, E. Pavitra, B. K. Moon, J. H. Jeong, J. S. Yu, J. H. Kim, and H. Choi, J. Alloys Compd. 509, 7537 (2011).

    Article  Google Scholar 

  16. M. Que, Z. Ci, Y. Wang, G. Zhu, Y. Shi, and S. Xin, J. Lumin. 144, 64 (2013).

    Article  Google Scholar 

  17. D. Kim, D. Park, N. Oh, J. Kim, E. D. Jeong, S.‑J. Kim, S. Kim, and J.-C. Park, Inorg. Chem. 54, 1325 (2014).

    Article  Google Scholar 

  18. Y. I. Jeon, L. K. Bharat, and J. S. Yu, J. Lumin. 166, 93 (2015).

    Article  Google Scholar 

  19. Y. Cao, X. Ding, and Y. Wang, J. Am. Ceram. Soc. 99, 3696 (2016).

    Article  Google Scholar 

  20. N. Liu, L. Mei, L. Liao, J. Fu, and D. Yang, Sci. Rep. 9, 15509 (2019).

    Article  ADS  Google Scholar 

  21. K. B. Steinbruegge, T. Henningsen, R. H. Hopkins, R. Mazelsky, N. T. Melamed, E. P. Riedel, and G. W. R. May, Appl. Opt. 11, 999 (1972).

    Article  ADS  Google Scholar 

  22. P. Raybaut, F. Druon, F. Balembois, P. G. R. Gaume, B. Viana, and D. Vivien, Opt. Lett. 28, 2195 (2003).

    Article  ADS  Google Scholar 

  23. H. K. Juwhari, M. H. Kailani, B. I. Lahlouh, S. A. Abedrabbo, K. A. Saleh, and W. B. White, Mater. Lett. 87, 80 (2012).

    Article  Google Scholar 

  24. Y. V. Baklanova, O. A. Lipina, A. N. Enyashin, L. L. Surat, A. P. Tyutyunnik, N. V. Tarakina, A. Dominic Fortes, A. Yu. Chufarov, E. V. Gorbatova, and V. G. Zubkov, Dalton Trans. 47, 14041 (2018).

    Article  Google Scholar 

  25. L. Wu, Y. Zhang, M. Gui, P. Lu, L. Zhao, S. Tian, Y. Kong, and J. Xu, Mater. Chem. 22, 6463 (2012).

    Article  Google Scholar 

  26. C. Wang, J. Jiang, S. Xin, Y. Shi, and G. Zhu, J. Lumin. 214, 116521 (2019).

    Article  Google Scholar 

  27. B. H. Toby, J. Appl. Crystallogr. 34, 210 (2001).

    Article  Google Scholar 

  28. A. C. Larson and R. B. von Dreele, Report LAUR 86-748 (Los Alamos Natl. Labor., Los Alamos, NM, 2004).

    Google Scholar 

  29. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., B 25, 925 (1969).

    Article  Google Scholar 

  30. Y. Q. Jia, J. Solid State Chem. 95, 184 (1991).

    Article  ADS  Google Scholar 

  31. M. Stefanski, K. Grzeszkiewicz, M. Ptak, D. Hreniak, and W. Strek, J. Chem. Phys. 150, 094706 (2019).

    Article  ADS  Google Scholar 

  32. S. McCamy, Color Res. Appl. 17, 142 (1992).

    Article  Google Scholar 

  33. G. Blasse, Phys. Lett. A 28, 444 (1968).

    Article  ADS  Google Scholar 

  34. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  35. D. L. Dexter and L. Shulman, J. Chem. Phys. 22, 1063 (1954).

    Article  ADS  Google Scholar 

  36. L. G. van Uitert, J. Electrochem. Soc. 114, 1048 (1967).

    Article  ADS  Google Scholar 

  37. V. Bachmann, C. Ronda, and A. Meijerink, Chem. Mater. 21, 2077 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-13-10111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Baklanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklanova, Y.V., Lipina, O.A., Surat, L.L. et al. Luminescence Properties of Sr2La8 – xTmx(GeO4)6O2 Apatites (x = 0.1–1.0) in the Visible and Short-Wave IR Spectral Ranges. Phys. Solid State 62, 1407–1414 (2020). https://doi.org/10.1134/S1063783420080053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420080053

Keywords:

Navigation