Skip to main content
Log in

Electronic Structure and Optical Absorption Spectra of Gold Fullerenes Au16 and Au20

  • FULLERENES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electronic and optical properties of gold fullerenes are studied in the framework of the Hubbard model. The expressions of the Fourier transforms of anticommutator Green functions have been obtained for gold fullerenes Au16 and Au20, the poles of which determine the energy spectrum of the system under consideration. The calculations are performed for the thermodynamic means that characterize jumps of electrons from a nanosystem site to a neighboring site, the correlation functions demonstrating the possibility of existing two d electrons with oppositely oriented spin projections on the same site of the fullerenes consisting of gold atoms. The optical absorption spectra are presented. The optical absorption peaks of ions \({\text{Au}}_{{20}}^{ - }\) and \({\text{Au}}_{{16}}^{ - }\) correspond to a near-infrared spectral region, where the light absorption by blood or a soft tissue is vanishingly small; thus, these ions can be used as a new class of contrast improvements and phototherapeutic means for diagnostics and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. L. Au, J. Chen, L. V. Wang, and Y. Xia, in Cancer Nanotechnology: Methods and Protocols, Vol. 624 of Methods in Molecular Biology (Humana, New York, 2010), p. 83.

  2. S. Bulusu, X. Li, L. Wang, and X. G. Zeng, Proc. Natl. Acad. Sci. U. S. A. 103, 8326 (2006).

    Article  ADS  Google Scholar 

  3. G. Schmid and U. Simon, Chem. Commun. 6, 697 (2005).

    Article  Google Scholar 

  4. M. Homberger and U. Simon, Phil. Trans. R. Soc., A 368, 1405 (2010).

  5. Y. Okinaka, Gold Bull. 33, 117 (2000).

    Article  Google Scholar 

  6. P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, and A. Fielicke, Science (Washington, DC, U. S.) 321, 674 (2008).

    Article  ADS  Google Scholar 

  7. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).

    Article  Google Scholar 

  8. D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, Nature (London, U.K.) 408, 67 (2000).

    Article  ADS  Google Scholar 

  9. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 16, 405 (1987).

    Article  Google Scholar 

  10. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301 (1989).

    Article  Google Scholar 

  11. M. A. Mackey, M. A. Matmoues, and M. A. El-Sayed, Bioconjugate Chem. 24, 897 (2013).

    Article  Google Scholar 

  12. S. Her, D. A. Jaaffray, and C. Allen, Adv. Drug Deliv. 109, 84 (2017).

    Article  Google Scholar 

  13. W. Li, P. K. Brown, L. V. Wang, and Y. Xi, Contrast Media Mol. Imaging 6, 370 (2011).

    Article  Google Scholar 

  14. A. Zhang, W. Guo, J. Wang, X. Ma, and D. Yu, Nanoscale Res. Lett. 11, 279 (2016).

    Article  ADS  Google Scholar 

  15. S. E. Skrabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Co-bley, and Y. Xia, Accounts Chem. Res. 41, 1587 (2008).

    Article  Google Scholar 

  16. G. I. Mironov, Phys. Solid State 50, 188 (2008).

    Article  ADS  Google Scholar 

  17. G. I. Mironov, Phys. Met. Metallogr. 105, 327 (2008).

    Article  ADS  Google Scholar 

  18. E. S. Kryachko and F. Remacle, Int. J. Quantum Chem. 107, 2922 (2007).

    Article  ADS  Google Scholar 

  19. K. J. Taylor, C. L. Pettiette-Hall, and R. E. Smalley, J. Chem. Phys. 96, 3319 (1992).

    Article  ADS  Google Scholar 

  20. C. Jackschath, I. Rabin, and W. Schulz, Phys. Chem. 86, 1200 (1992).

    Google Scholar 

  21. J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science (Washington, DC, U. S.) 299, 864 (2003).

    Article  ADS  Google Scholar 

  22. P. N. D’yachkov, Russ. J. Inorg. Chem. 60, 947 (2015).

    Article  Google Scholar 

  23. G. I. Mironov, Russ. J. Inorg. Chem. 63, 66 (2018).

    Article  Google Scholar 

  24. J. Hubbard, Proc. R. Soc., A 276, 238 (1963).

    Article  ADS  Google Scholar 

  25. S. P. Shubin and S. V. Wonsowskii, Proc. R. Soc. A 145, 159 (1934).

    Article  ADS  Google Scholar 

  26. S. V. Tyablikov, Quantum Theory of Magnetism Methods (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  27. E. M. Fernandez, J. M. Soler, I. L. Garzon, and L. C. Balbas, Phys. Rev. B 70, 165403 (2004).

    Article  ADS  Google Scholar 

  28. J. Wang, C. Wang, and J. Zhao, Chem. Phys. Lett. 380, 716 (2003).

    Article  ADS  Google Scholar 

  29. J. Li, X. Li, H.-J. Zhai, and L.-S. Wang, Science (Washington, DC, U. S.) 299, 864 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Mironov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, G.I. Electronic Structure and Optical Absorption Spectra of Gold Fullerenes Au16 and Au20. Phys. Solid State 61, 1144–1153 (2019). https://doi.org/10.1134/S106378341906012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341906012X

Navigation