Skip to main content
Log in

An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

An extended critical state model has been developed. The model has considered the equilibrium magnetization of a surface layer and the magnetization of the central region of a superconducting sample. The magnetic flux distributions in the sample have been calculated. An analytical dependence of the critical current density on the magnetic field with different behaviors in strong and weak fields has been proposed. A relation of the asymmetry of the magnetization loops and the critical current density to the sample size has been established. The model is applicable to the parameterization of magnetization loops of single-crystal and polycrystalline superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  2. D.-X. Chen, A. Sanchez, and J. S. Munoz, J. Appl. Phys. 67, 3430 (1990).

    Article  ADS  Google Scholar 

  3. V. V. Val’kov and B. P. Khrustalev, J. Exp. Theor. Phys. 80(4), 680 (1995).

    ADS  Google Scholar 

  4. D. M. Gokhfeld, D. A. Balaev, S. I. Popkov, K. A. Shaykhutdinov, and M. I. Petrov, Physica C (Amsterdam) 434, 135 (2006).

    Article  ADS  Google Scholar 

  5. D.-X. Chen, R. B. Goldfarb, R. W. Cross, and A. Sanchez, Phys. Rev. B: Condens. Matter 48, 6426 (1993).

    Article  ADS  Google Scholar 

  6. D.-X. Chen, A. Hernando, F. Conde, J. Ramirez, J. M. González-Calbet, and M. Vallet, J. Appl. Phys. 75, 2578 (1994).

    Article  ADS  Google Scholar 

  7. D. M. Gokhfeld, D. A. Balaev, M. I. Petrov, S. I. Popkov, K. A. Shaykhutdinov, and V. V. Valkov, J. Appl. Phys. 109, 033904 (2011).

    Article  ADS  Google Scholar 

  8. D.-X. Chen, R. W. Cross, and A. Sanchez, Cryogenics 33(7), 695 (1993).

    Article  ADS  Google Scholar 

  9. L. Burlachkov, Phys. Rev. B: Condens. Matter 47, 8056 (1993).

    Article  ADS  Google Scholar 

  10. E. V. Blinov, R. Laiho, E. Lahderanta, Yu. P. Stepanov, K. B. Traito, and L. S. Vlasenko, J. Exp. Theor. Phys. 79(3), 433 (1994).

    ADS  Google Scholar 

  11. X. Obradors and T. Puig, Supercond. Sci. Technol. 27, 044003 (2014).

    Article  ADS  Google Scholar 

  12. S. V. Yampolskii and Y. A. Genenko, Appl. Phys. Lett. 104, 033501 (2014).

    Article  ADS  Google Scholar 

  13. E. P. Krasnoperov, V. S. Korotkov, and A. A. Kartamyshev, J. Supercond. Novel Magn. 27, 1845 (2014).

    Article  Google Scholar 

  14. T. Schuster, H. Kuhn, E. H. Brandt, M. Indenbom, M. R. Koblischka, and M. Konczykowski, Phys. Rev. B: Condens. Matter 50, 16684 (1994).

    Article  ADS  Google Scholar 

  15. N. D. Kuz’michev and A. A. Fedchenko, Tech. Phys. 57(5), 631 (2012).

    Article  Google Scholar 

  16. M. Forsthuber and G. Hilscher, Phys. Rev. B: Condens. Matter 45, 7996 (1992).

    Article  ADS  Google Scholar 

  17. S. Altin and D. M. Gokhfeld, Physica C (Amsterdam) 471, 217 (2011).

    Article  ADS  Google Scholar 

  18. E. Altin, D. M. Gokhfeld, S. V. Komogortsev, S. Altin, and M. E. Yakinci, J. Mater. Sci.: Mater. Electron. 24, 1341 (2013).

    Google Scholar 

  19. D. A. Balaev, D. M. Gokhfel’d, S. I. Popkov, K. A. Shaikhutdinov, L. A. Klinkova, L. N. Zherikhina, and A. M. Tsvokhrebov, J. Exp. Theor. Phys. 118(1), 104 (2014).

    Article  ADS  Google Scholar 

  20. Z. D. Yakinci, D. M. Gokhfeld, E. Altin, F. Kurt, S. Altin, S. Demirel, M. A. Aksan, and M. E. Yakinci, J. Mater. Sci.: Mater. Electron. 24, 4790 (2013).

    Google Scholar 

  21. E. Altin, D. M. Gokhfeld, F. Kurt, and M. E. Yakinci, J. Mater. Sci.: Mater. Electron. 24, 5075 (2013).

    Google Scholar 

  22. E. Altin, D. M. Gokhfeld, S. Demirel, E. Oz, F. Kurt, S. Altin, and M. E. Yakinci, J. Mater. Sci.: Mater. Electron. 25, 1466 (2014).

    Google Scholar 

  23. M. I. Petrov, T. N. Tetyueva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and S. G. Ovchinnikov, Tech. Phys. Lett. 29(12), 986 (2003).

    Article  ADS  Google Scholar 

  24. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).

    Article  ADS  Google Scholar 

  25. A. S. Krasil’nikov, L. G. Mamsurova, N. G. Trusevich, L. G. Shcherbakova, and K. K. Pukhov, J. Exp. Theor. Phys. 82(3), 542 (1996).

    ADS  Google Scholar 

  26. J. R. Clem, in Low-Temperature Physics-LT14, Ed. by M. Krusius and M. Vuorio (North-Holland, Amsterdam, The Netherlands, 1975), Vol. 2, p. 285.

  27. R. Prozorov and R. W. Giannetta, Supercond. Sci. Technol. 19, R41 (2006).

    Article  ADS  Google Scholar 

  28. S. Senoussi, J. Phys. III 2, 1041 (1992).

    Google Scholar 

  29. A. Tulapurkar, Phys. Rev. B: Condens. Matter 64, 014508 (2001).

    Article  ADS  Google Scholar 

  30. Y. Kimishima, M. Uehara, T. Kuramoto, Y. Ichiyanagi, Y. Iriyama, and K. Yorimasa, Physica C (Amsterdam) 377, 196 (2002).

    Article  ADS  Google Scholar 

  31. R. Lal, Physica C (Amsterdam) 470, 281 (2010).

    Article  ADS  Google Scholar 

  32. C. Navau and A. Sanchez, Supercond. Sci. Technol. 14, 444 (2001).

    Article  ADS  Google Scholar 

  33. D. M. Gokhfeld, J. Supercond. Novel Magn. 26, 281 (2013).

    Article  Google Scholar 

  34. Q. Hong and J. H. Wang, Appl. Supercond. 2, 697 (1994).

    Article  Google Scholar 

  35. J. Horvat, S. Soltanian, A. V. Pan, and X. L. Wang, J. Appl. Phys. 96, 4342 (2004).

    Article  ADS  Google Scholar 

  36. Z. Hao and J. R. Clem, Phys. Rev. Lett. 67, 2371 (1991).

    Article  ADS  Google Scholar 

  37. I. L. Landau, J. B. Willems, and J. Hulliger, J. Phys.: Condens. Matter 20, 095222 (2008).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gokhfeld.

Additional information

Original Russian Text © D.M. Gokhfeld, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 12, pp. 2298–2304.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokhfeld, D.M. An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors. Phys. Solid State 56, 2380–2386 (2014). https://doi.org/10.1134/S1063783414120129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414120129

Keywords

Navigation