Skip to main content
Log in

Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations

  • Thermal Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The dependences of the coherent scattering region size and thermal expansion coefficient α of a PbS nanofilm on the annealing temperature in the range of 293–473 K and on the duration of annealing at a constant temperature of 423 K have been measured. It has been found that the thermal expansion coefficient α of the PbS nanofilm is almost twice as much as the coefficient α of coarse-grained lead sulfide. It has been shown that the large difference in the coefficients α is associated with the small size of particles in the film, which leads to an increase in the anharmonicity of atomic vibrations. The contribution from the small size of particles to the thermal expansion coefficient of the PbS nanofilm has been evaluated theoretically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Qadri, A. Singh, and M. Yousuf, Thin Solid Films 431–432, 506 (2003).

    Article  Google Scholar 

  2. S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 573, 65 (2013).

    Article  Google Scholar 

  3. S. I. Sadovnikov and A. A. Rempel, Phys. Solid State 51(11), 2375 (2009).

    Article  ADS  Google Scholar 

  4. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel’, JETP Lett. 89(5), 238 (2009).

    Article  ADS  Google Scholar 

  5. S. I. Sadovnikov and A. A. Rempel, Dokl. Phys. Chem. 428(1), 167 (2009).

    Article  Google Scholar 

  6. S. I. Sadovnikov, N. S. Kozhevnikova, A. A. Rempel, and A. Magerl, Thin Solid Films 548, 230 (2013).

    Article  ADS  Google Scholar 

  7. A. I. Gusev and A. A. Rempel’, Sov. Phys. Solid State 26(12), 2178 (1984).

    Google Scholar 

  8. A. A. Valeeva, A. A. Rempel, W. Sprengel, and H.-E. Schaefer, Phys. Rev. B: Condens. Matter 75(9), 094107 (2007).

    Article  ADS  Google Scholar 

  9. A. A. Valeeva, A. A. Rempel, M. A. Muller, K. J. Reichle, G. Tang, W. Sprengel, and H.-E. Schaefer, Phys. Status Solidi B 224(2), R1 (2001).

    Article  ADS  Google Scholar 

  10. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, JETP Lett. 71(11), 460 (2000).

    Article  ADS  Google Scholar 

  11. Y. Noda, K. Masumoto, S. Ohba, Y. Saito, K. Toriumi, Y. Iwata, and K. Shibuya, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 43(8), 1443 (1987).

    Article  Google Scholar 

  12. N. Choudhury and B. K. Sarma, Bull. Mater. Sci. 32(1), 43 (2009).

    Article  Google Scholar 

  13. S. S. Sharma, Proc. Indian Natl. Acad. Sci., Part A 34, 2, 72 (1951).

    Google Scholar 

  14. S. I. Novikova and N. Kh. Abrikosov, Sov. Phys. Solid State 5(7), 1397 (1963).

    Google Scholar 

  15. Yi Zhang, X. Ke, C. Chen, J. Yang, and P. R. C. Kent, Phys. Rev. B: Condens. Matter 80(2), 024304 (2009).

    Article  ADS  Google Scholar 

  16. R. W. Morton, D. E. Simon, J. J. Gislason, and S. Taylor, Adv. X-Ray Anal. 46(1), 80 (2003).

    Google Scholar 

  17. A. S. Kurlov and A. I. Gusev, Tungsten Carbides: Structure, Properties, and Application in Hardmetals (Springer-Verlag, Cham, Germany, 2013).

    Book  Google Scholar 

  18. A. I. Gusev, Phys.—Usp. 41(1), 49 (1998).

    Article  ADS  Google Scholar 

  19. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge International, Cambridge, 2004).

    Google Scholar 

  20. A. I. Gusev, Nanomaterials, Nanostructures, and Nanotechnologies, 2nd ed. (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  21. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cornell University Press, New York, 1976), pp. 492–494.

    Google Scholar 

  22. Yu. I. Petrov, Physics of Small Particles (Nauka, Moscow, 1982), p. 80 [in Russian].

    Google Scholar 

  23. E. W. Montroll, J. Chem. Phys. 18(2), 183 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. A. Chudinov, Sov. Phys. Solid State 5(5), 1061 (1963).

    Google Scholar 

  25. G. N. Ramachandran and W. A. Wooster, Nature (London) 164(4175), 839 (1949).

    Article  ADS  Google Scholar 

  26. S. Bhagavantam and T. S. Rao, Nature (London) 168(4262), 42 (1951).

    Article  ADS  Google Scholar 

  27. G. I. Peresada, E. G. Ponyatovskii, and Zh. D. Sokolovskaya, Phys. Status Solidi A 35(2), K177 (1976).

    Article  ADS  Google Scholar 

  28. V. M. Kuznetsov and V. I. Khromov, Tech. Phys. 54(6), 923 (2009).

    Article  Google Scholar 

  29. S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 610, 196 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gusev.

Additional information

Original Russian Text © S.I. Sadovnikov, A.I. Gusev, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 11, pp. 2274–2278.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I., Gusev, A.I. Thermal expansion of nanostructured PbS films and anharmonicity of atomic vibrations. Phys. Solid State 56, 2353–2358 (2014). https://doi.org/10.1134/S1063783414110249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414110249

Keywords

Navigation