Skip to main content
Log in

Effect of dimensionality on the spectra of hybrid plasmonic-photonic crystals

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Based on colloidal crystals of various dimensionality, hybrid metal-dielectric plasmonic-photonic heterocrystals have been prepared. It has been shown that the spectra of optical transmission of heterocrystals are mostly controlled by the sum of contributions of composing plasmonic and photonic crystals. At the same time, there are a number of phenomena caused by the mutual effect of heterostructure components, which lead to a deviation of observed optical properties from the linear superposition of responses of these crystals. In particular, it has been found that the anomalous transmission controlled by the plasmonic crystal decreases with increasing the dimensionality of the photonic crystal attached to it. At the same time, light reflection on a metallized surface changes light diffraction in photonic crystals and leads to Fabry-Perot oscillation amplification. It has been assumed that an intermediate layer is formed, in which Bloch modes of the photonic crystal and surface plasmon-polaritons of the plasmonic crystal are hybridized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Stefanou, V. Yannopapas, and A. Modino, Comput. Phys. Commun. 113, 49 (1998).

    Article  ADS  MATH  Google Scholar 

  2. S. G. Romanov, H. M. Yates, M. E. Pemble, R. M. De La Rue, J. Phys.: Condens. Matter 12, 8221 (2000).

    Article  ADS  Google Scholar 

  3. E. Istrate and E. H. Sargent, Rev. Mod. Phys. 78, 455 (2006).

    Article  ADS  Google Scholar 

  4. P. Jiang, G. N. Ostojic, R. Narat, D. M. Mittleman, and V. L. Colvin, Adv. Mater. (Weinheim) 13, 389 (2001).

    Article  Google Scholar 

  5. S. Sadat-Saleh, S. Benchabane, F. I. Baida, M.-P. Bernal, and V. Laude, J. Appl. Phys. 106, 074912 (2009).

    Article  ADS  Google Scholar 

  6. B. Lenk, H. Ulrichs, F. Garbs, and M. Munzenberg, Phys. Rep. 507, 107 (2011).

    Article  ADS  Google Scholar 

  7. A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, Phys. Status Solidi A 190, 413 (2002).

    Article  ADS  Google Scholar 

  8. S. G. Romanov, A. Regensburger, A. V. Korovin, and U. Peschel, Adv. Mater. (Weiheim) 23, 2515 (2011).

    Article  Google Scholar 

  9. D. Wang, J. Li, C. T. Chan, V. A. SalgueiriÇo-Maceira, L. M. Liz-Marzn, S. Romanov, and F. Caruso, Small 1, 122 (2005).

    Article  Google Scholar 

  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, New York, 2007).

    Google Scholar 

  11. S. G. Romanov, M. Bardosova, M. Pemble, and C. M. Sotomayor Torres, Appl. Phys. Lett. 89, 43105 (2006).

    Article  Google Scholar 

  12. S. G. Romanov, Phys. Solid State 52(4), 844 (2010).

    Article  Google Scholar 

  13. S. G. Romanov, U. Peschel, M. Bardosova, S. Essig, and K. Busch, Phys. Rev. B: Condens. Matter 82, 115403 (2010).

    Article  ADS  Google Scholar 

  14. M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, and D. Whitehead, Thin Solid Films 437, 276 (2003).

    Article  ADS  Google Scholar 

  15. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).

    Article  Google Scholar 

  16. L. Landström, D. Brodoceanu, K. Piglmayer, and D. Bäuerle, Appl. Phys. A: Mater. Sci. Process. 84, 373 (2006).

    Article  ADS  Google Scholar 

  17. C. Farcau and S. Astilean, J. Opt. A: Pure Appl. Opt. 9, S345 (2007).

    Article  Google Scholar 

  18. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998).

    Article  ADS  Google Scholar 

  19. A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, Small 4, 2292 (2008).

    Article  Google Scholar 

  20. I. Ursu, I. N. Mihailescu, A. M. Prokhorov, V. I. Konov, and V. N. Tokarev, Physica B+C (Amsterdam) 132, 395 (1985).

    Article  ADS  Google Scholar 

  21. L. Landstrom, D. Brodoceanu, D. Bauerle, F.J. Garcia-Vidal, S. G. Rodrigo, and L. Martin-Moreno, Opt. Express 17, 761 (2009).

    Article  ADS  Google Scholar 

  22. S. Brand, M. A. Kaliteevski, and R. A. Abram, Phys. Rev. B: Condens. Matter 79, 085416–1 (2009).

    Article  ADS  Google Scholar 

  23. B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, Adv. Func. Mater. 21, 4182 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Romanov.

Additional information

Original Russian Text © A.S. Romanova, A.V. Korovin, S.G. Romanov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 8, pp. 1612–1619.

Report at the All-Russian Youth Conference “Opal-Like Structures,” St. Petersburg, May 23–25, 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanova, A.S., Korovin, A.V. & Romanov, S.G. Effect of dimensionality on the spectra of hybrid plasmonic-photonic crystals. Phys. Solid State 55, 1725–1732 (2013). https://doi.org/10.1134/S1063783413080234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413080234

Keywords

Navigation