Skip to main content
Log in

Electrical and galvanomagnetic properties of biocarbon preforms of white pine wood

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical and galvanomagnetic properties of high-porosity biocarbon preforms prepared from white pine wood by pyrolysis at carbonization temperatures T carb = 1000 and 2400°C have been studied. Measurements have been made of the behavior with temperature of the electrical resistivity, as well as of magnetoresistance and the Hall coefficient in the 1.8–300-K temperature interval and magnetic fields of up to 28 kOe. It has been shown that samples of both types (with T carb = 1000 and 2400°C) are characterized by high carrier (hole) concentrations of 6.3 × 1020 and 3.6 × 1020 cm−3, respectively. While these figures approach the metallic concentration, the electrical resistivity of the biocarbon materials studied, unlike that of normal metals, grows with decreasing temperature. Increasing T carb brings about a decrease in electrical resistivity by a factor 1.5–2 within the 1.8–300-K temperature range. The magnetoresistance also follows a qualitatively different pattern at low (1.8–4.2 K) temperatures: it is negative for T carb = 2400°C and positive for T carb = 1000°C. An analysis of experimental data has revealed that the specific features in the conductivity and magnetoresistance of these samples are described by quantum corrections associated inherently with structural characteristics of the biocarbon samples studied, more specifically with the difference between the fractions of the quasi-amorphous and nanocrystalline phases, as well as with the fine structure of the latter phase forming at the two different T carb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Byrne and D. C. Nagle, Carbon 35(2), 259 (1997).

    Article  Google Scholar 

  2. C. E. Byrne and D. C. Nagle, Mater. Res. Innovations 1, 137 (1997).

    Article  Google Scholar 

  3. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  4. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 56 (2004).

    Google Scholar 

  5. P. Sebo and P. Stefanik, Int. J. Mater. Prod. Technol. 18(1–3), 141 (2003).

    Google Scholar 

  6. J. Kovacik and J. Bielek, Scr. Mater. 35, 151 (1996).

    Article  Google Scholar 

  7. F. M. Varela-Feria, J. Martinez-Fernandez, A. Munoz, A. R. de Arellano-Lopez, and M. Singh, J. Eur. Ceram. Soc. 22, 2719 (2002).

    Article  Google Scholar 

  8. H. Robbins and B. Schwartz, J. Electrochem. Soc. 106(6), 505 (1959).

    Article  Google Scholar 

  9. V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Fiz. Tverd. Tela (St. Petersburg) 50(10), 1748 (2008) [Phys. Solid State 50 (10), 1819 (2008)].

    Google Scholar 

  10. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, E. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Fiz. Tverd. Tela (St. Petersburg) 48(3), 415 (2006) [Phys. Solid State 48 (3), 441 (2006)].

    Google Scholar 

  11. L. S. Parfen’eva, T. S. Orlova, N. F. Kartena, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Fiz. Tverd. Tela (St. Petersburg) 50(12), 2150 (2008) [Phys. Solid State 50 (12), 2245 (2008)].

    Google Scholar 

  12. A. Kercher and D. C. Nagle, Carbon 41(1), 15 (2003).

    Article  Google Scholar 

  13. C. E. Byrne and D. C. Nagle, Carbon 35(2), 267 (1997).

    Article  Google Scholar 

  14. F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Seville, Spain, 2004).

  15. T. S. Orlova, D. V. Il’in, B. I. Smirnov, I. A. Smirnov, R. Sepulveda, J. Martinez-Fernandez, and A. R. de Arellano-Lopez, Fiz. Tverd. Tela (St. Petersburg) 49(2), 198 (2007) [Phys. Solid State 49 (2), 205 (2007)].

    Google Scholar 

  16. V. V. Popov, S. K. Gordeev, A. V. Grechinskaya, and A. M. Danishevskiĭ, Fiz. Tverd. Tela (St. Petersburg) 44(4), 758 (2002) [Phys. Solid State 44 (4), 789 (2002)].

    Google Scholar 

  17. V. F. Gantmakher, Electrons and Disorder in Solids (Fizmatlit, Moscow, 2003; Oxford University Press, Oxford, MS, United States, 2005).

    Google Scholar 

  18. I. Shlimak, M. Kaveh, R. Ussyshkin, V. Ginodman, and L. Resnick, Phys. Rev. Lett. 77(6), 1103 (1996).

    Article  ADS  Google Scholar 

  19. P. A. Lee and T. V. Ramakrishnan, Phys. Rev. B: Condens. Matter 26, 4009 (1982).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

Original Russian Text © V.V. Popov, T.S. Orlova, J. Ramirez-Rico, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 11, pp. 2118–2122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.V., Orlova, T.S. & Ramirez-Rico, J. Electrical and galvanomagnetic properties of biocarbon preforms of white pine wood. Phys. Solid State 51, 2247–2251 (2009). https://doi.org/10.1134/S1063783409110080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409110080

PACS numbers

Navigation