Skip to main content
Log in

Scanning tunneling microscopy study of the growth and self-organization of Ge nanostructures on vicinal Si(111) surfaces

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The initial stages of Ge growth on Si(111) vicinal surfaces tilted in the [\(\overline 1 \overline 1 2\)] and [\(11\overline 2 \)] directions were studied in situ in the temperature range 350–500°C using scanning tunneling microscopy. It was shown that, at low Ge deposition rates of 10−2 to 10−3 BL/min, ordered Ge nanowires can form on surfaces tilted in the [\(\overline 1 \overline 1 2\)] direction under conditions of step-layered growth. The height of a nanosized Ge wire is one or three interplanar distances and is determined by the initial height of a silicon step. It was established that, during epitaxial growth, steps with a [\(11\overline 2 \)] front are replaced by steps with a [\(\overline 1 \overline 1 2\)] front. As a result, the step edge is serrated and the formation of smooth nanosized Ge wires uniform in width is hampered on the serrated Si(111) surfaces tilted in the [\(11\overline 2 \)] direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskiĭ, L. V. Sokolov, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34(11), 1281 (2000) [Semiconductors 34 (11), 1229 (2000)].

    Google Scholar 

  2. A. G. Makarov, N. N. Ledentsov, A. F. Tsatsul’nikov, G. É. Cirlin, V. A. Egorov, V. M. Ustinov, N. D. Zakharov, and P. Werner, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37(2), 2193 (2003) [Semiconductors 37 (2), 210 (2003)].

    Google Scholar 

  3. Zhenyagn Zhong, A. Halilovic, M. Mühlberger, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 82, 445 (2003).

    Article  ADS  Google Scholar 

  4. Zhenyang Zhong, A. Halilovic, T. Fromherz, F. Schäffler, and G. Bauer, Appl. Phys. Lett. 82, 4779 (2003).

    Article  ADS  Google Scholar 

  5. Zhenyang Zhong, A. Halolovic, M. Mühlberger, F. Schäffler, and G. Bauer, J. Appl. Phys. 93, 6258 (2003).

    Article  ADS  Google Scholar 

  6. V. A. Egorov, G. É. Cirlin, A. A. Tonkikh, V. G. Talalaev, A. G. Makarov, N. N. Ledentsov, V. M. Ustinov, N. D. Zakharov, and P. Werner, Fiz. Tverd. Tela (St. Petersburg) 46(1), 53 (2004) [Phys. Solid State 46 (1), 49 (2004)].

    Google Scholar 

  7. H. Lichtenberger, M. Mühlberger, and F. Schäffler, Appl. Phys. Lett. 86, 131919 (2005).

    Google Scholar 

  8. G. Jin, Y. S. Tang, J. L. Liu, and K. L. Wang, Appl. Phys. Lett. 74, 2471 (1999).

    Article  ADS  Google Scholar 

  9. D. J. Eaglesham, A. E. White, L. C. Feldman, N. Moriya, and D. C. Jacobson, Phys. Rev. Lett. 70, 1643 (1993).

    Article  ADS  Google Scholar 

  10. B. Z. Olshanetsky and S. A. Teys, Surf. Sci. 230, 184 (1990).

    Article  Google Scholar 

  11. J.-L. Lin, D. Y. Petrovykh, J. Viernow, F. K. Men, D. J. Seo, and F. J. Himpsel, J. Appl. Phys. 84, 255 (1998).

    Article  ADS  Google Scholar 

  12. J. Viernow, J.-L. Lin, D. Y. Petrovykh, F. M. Leibsle, F. K. Men, and F. J. Himpsel, Appl. Phys. Lett. 72, 948 (1998).

    Article  ADS  Google Scholar 

  13. A. Kirakosian, R. Bennewitz, J. N. Crain, Th. Fauster, J.-L. Lin, D. Y. Petrovykh, and F. J. Himpsel, Appl. Phys. Lett. 79, 1608 (2001).

    Article  ADS  Google Scholar 

  14. S. A. Teys and B. Z. Olshanetsky, Phys. Low-Dimens. Struct. 1/2, 37 (2002).

    Google Scholar 

  15. J. A. Kubby and J. J. Boland, Surf. Sci. Rep. 26, 61 (1996).

    Article  Google Scholar 

  16. L. E. K. van de Leemput and H. van Kempen, Rep. Prog. Phys. 55, 1165 (1992).

    Article  ADS  Google Scholar 

  17. R. J. Phaneulf, E. D. Williams, and N. C. Bartelt, Phys. Rev. B: Condens. Matter 38, 1984 (1988).

    ADS  Google Scholar 

  18. A. V. Latyshev, A. B. Krasilnikov, and A. L. Aseev, Thin Solid Films 306, 205 (1997).

    Article  Google Scholar 

  19. J. Wei, X.-S. Wang, J. L. Goldberg, N. C. Bartelt, and E. D. Williams, Phys. Rev. Lett. 68, 3885 (1992).

    Article  ADS  Google Scholar 

  20. T. Suzuki, H. Minoda, Y. Tanishiro, and K. Yagi, Surf. Sci. 496, 179 (2002).

    Article  Google Scholar 

  21. H. Tochihara, W. Shimada, M. Itoh, H. Tanaka, M. Udagawa, and I. Sumita, Phys. Rev. B: Condens. Matter 45, 11332 (1992).

    ADS  Google Scholar 

  22. Ya. Wang and T. Tsong, Phys. Rev. B: Condens. Matter 53, 6915 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © K.N. Romanyuk, S.A. Teys, B.Z. Olshanetsky, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 9, pp. 1716–1722.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanyuk, K.N., Teys, S.A. & Olshanetsky, B.Z. Scanning tunneling microscopy study of the growth and self-organization of Ge nanostructures on vicinal Si(111) surfaces. Phys. Solid State 48, 1820–1826 (2006). https://doi.org/10.1134/S1063783406090344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406090344

PACS numbers

Navigation