Skip to main content
Log in

Band Gap Opening of Doped Graphene Stone Wales Defects: Simulation Study

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We implemented density functional theory to investigate the electronic properties of doped graphene Stone Wales defects. We found that the band gap of nitrogen doped graphene with different orientations of Stone Wales defect could be tuned. The obtained band gap results strongly depend not only on the specific location of the doped atom, but also on the orientations of Stone Wales defects. The symmetrical density of states is an indication that the total magnetic moment was zero as the valence electrons grouped in pairs. In addition, we performed charge analysis for all nitrogen doped graphene Stone Wales defects structures and it can be observed that the carbon atoms are more electronegative compared to nitrogen atoms, which obtain all the valence electrons. The transferred charge from nitrogen atom is largely localized on the carbon atoms lying in close proximity of the dopant atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Nat. Mater. 9, 315 (2010).

    Article  ADS  Google Scholar 

  2. M. Dvorak, W. Oswald, and Z. Wu, Sci. Rep. 3, 2289 (2013).

    Article  ADS  Google Scholar 

  3. Q. Peng and S. De, Phys. E (Amsterdam, Neth.) 44, 1662 (2012).

  4. C.-H. Chang, X. Fan, L.-J. Li, and J.-L. Kuo, J. Phys. Chem. C 116, 13788 (2017).

    Article  Google Scholar 

  5. J. A. Talla, Comput. Condens. Matter. 15, 25 (2018).

    Article  Google Scholar 

  6. H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, Rep. Prog. Phys. 75, 062501 (2012).

    Article  ADS  Google Scholar 

  7. R. Lv, Q. Li, A. s. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutiérrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones, Sci. Rep. 2, 586 (2012).

    Article  Google Scholar 

  8. A. A. Ahmad, A. M. Alsaad, B. A. Albiss, M. A. Al-Akhras, H. M. El-Nasser, and I. A. Qattan, Phys. B (Amsterdam, Neth.) 470–471, 21 (2015).

  9. H. El-Nasser and O. D. Ali, Iran. Polym. J. 19, 57 (2010).

    Google Scholar 

  10. S. Sahu and G. C. Rout, Int. Nano Lett. 7, 81 (2017).

    Article  Google Scholar 

  11. J. A. Talla, Phys. Lett. A 383, 2076 (2019).

    Article  ADS  Google Scholar 

  12. J. A. Talla and A. A. Ghozlan, Chin. J. Phys. 56, 740 (2018).

    Article  Google Scholar 

  13. T. A. Jamal and S. A. Saed, Nanosci. Nanotechnol. Lett. 7, 6 (2015).

    Article  Google Scholar 

  14. J. A. Talla, Chem. Phys. 392, 71 (2012).

    Article  ADS  Google Scholar 

  15. D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. K. Adamchuk, A. B. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, C. Laubschat, and D. V. Vyalikh, Nano Lett. 11, 5401 (2011).

    Article  ADS  Google Scholar 

  16. T. A. Jamal, Phys. B (Amsterdam, Neth.) 407, 966 (2012).

  17. P. A. Denis, Chem. Phys. Lett. 492, 251 (2010).

    Article  ADS  Google Scholar 

  18. A. J. Samuels and J. D. Carey, ACS Nano 7, 2790 (2013).

    Article  Google Scholar 

  19. F. Bakhshi and N. Farhadian, Int. J. Hydrogen Energy 43, 8355 (2018).

    Article  Google Scholar 

  20. S.-W. Xue, J. Chen, and J. Zhang, Chin. Phys. Lett. 30, 103102 (2013).

    Article  ADS  Google Scholar 

  21. L. Openov and A. I. Podlivaev, Interaction of the Stone-Wales Defects in Graphene (Pleiades, Moscow, 2015) [in Russian].

    Book  Google Scholar 

  22. K. Xie, Q. Jia, X. Zhang, L. Fu, and G. Zhao, Nanomaterials 8 (7) (2018).

  23. J. A. Talla, Comput. Condens. Matter 19, e00378 (2019).

    Article  Google Scholar 

  24. J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J. Chem. Phys. 123, 174101 (2005).

    Article  ADS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  26. J. A. Talla and A. F. Alsalieby, Chin. J. Phys. 59, 418 (2019).

    Article  Google Scholar 

  27. J. Talla, M. Abusini, Kh. Khazaeleh, R. Omari, M. Serhan, and H. El-Nasser, Mater. Express 7, 516 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal A. Talla.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talla, J.A. Band Gap Opening of Doped Graphene Stone Wales Defects: Simulation Study. Semiconductors 54, 40–45 (2020). https://doi.org/10.1134/S1063782620010236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620010236

Keywords:

Navigation