Skip to main content
Log in

Specific features of doping with antimony during the ion-beam crystallization of silicon

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A method of doping during the growth of thin films by ion-beam crystallization is proposed. By the example of Si and Sb, the possibility of controllably doping semiconductors during the ion-beam crystallization process is shown. A calibrated temperature dependence of the antimony vapor flow rate in the range from 150 to 400°C is obtained. It is established that, an increase in the evaporator temperature above 200°C brings about the accumulation of impurities in the layer growth direction. Silicon layers doped with antimony to a concentration of 1018 cm–3 are grown. It is shown that, as the evaporator temperature is increased, the efficiency of the activation of antimony in silicon nonlinearly decreases from ~100 to ~10–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Seshan, Handbook of Thin Film Deposition (William Andrew, 2012).

    Google Scholar 

  2. D. W. Reagor and V. Y. Butko, Nature Mater. 4, 593 (2005).

    Article  ADS  Google Scholar 

  3. N. Razek, A. Schindler, and B. Rauschenbach, Vacuum 81, 974 (2007).

    Article  ADS  Google Scholar 

  4. W. J. Kim, W. H. Koo, S. J. Jo, C. S. Kim, and H. K. Baik, J. Vac. Sci. Technol. B 23, 2357 (2005).

    Article  Google Scholar 

  5. J. J. Ke, K. T. Tsai, Y. A. Dai, and J. H. He, Appl. Phys. Lett. 100, 053503 (2012).

    Article  ADS  Google Scholar 

  6. K. Wang, Y. Vygranenko, and A. Nathan, Thin Solid Films 516, 1640 (2008).

    Article  ADS  Google Scholar 

  7. J. Szezyrbowski, A. Czapla, and M. Jachimovski, Thin Solid Films 42, 193 (1977).

    Article  ADS  Google Scholar 

  8. I. A. Sysoev, M. L. Lunina, D. L. Alfimova, A. V. Blagin, D. A. Gusev, and B. M. Seredin, Inorg. Mater. 50, 215 (2014).

    Article  Google Scholar 

  9. M. Takeuchi, Y. Sakagawa, and H. Nagasaka, Thin Solid Films 33, 89 (1976).

    Article  ADS  Google Scholar 

  10. A. Zozime, G. Cohen-Solal, and F. Bailly, Thin Solid Films 70, 139 (1980).

    Article  ADS  Google Scholar 

  11. L. S. Lunin, S. N. Chebotarev, A. S. Pashchenko, and L. N. Bolobanova, Inorg. Mater. 48, 439 (2012).

    Article  Google Scholar 

  12. L. S. Lunin, I. A. Sysoev, D. P. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, Inorg. Mater. 47, 816 (2011).

    Article  Google Scholar 

  13. L. S. Lunin, I. A. Sysoev, D. L. Alfimova, S. N. Chebotarev, and A. S. Pashchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 559 (2011).

    Article  Google Scholar 

  14. A. S. Pashchenko, S. N. Chebotarev, and L. S. Lunin, Inorg. Mater. 51, 197 (2015).

    Article  Google Scholar 

  15. L. S. Lunin and A. S. Pashchenko, Tech. Phys. 56, 1291 (2011).

    Article  Google Scholar 

  16. S. N. Chebotarev, A. S. Pashchenko, A. Williamson, L. S. Lunin, V. A. Irkha, and V. A. Gamidov, Tech. Phys. Lett. 41, 661 (2015).

    Article  ADS  Google Scholar 

  17. L. S. Lunin, I. A. Sysoev, S. N. Chebotarev, and A. S. Pashchenko, Vestn. YuNTs RAN 6 (4), 46 (2010).

    Google Scholar 

  18. S. N. Chebotarev, A. S. Pashchenko, L. S. Lunin, and V. A. Irkha, Tech. Phys. Lett. 39, 726 (2013).

    Article  ADS  Google Scholar 

  19. L. S. Lunin, S. N. Chebotarev, and A. S. Pashchenko, Inorg. Mater. 49, 435 (2013).

    Article  Google Scholar 

  20. J. E. Greene, Crit. Rev. Solid State Mater. Sci. 11, 189 (1983).

    Article  ADS  Google Scholar 

  21. J. E. Greene, S. A. Barnett, K. C. Cadien, and M. A. Ray, J. Cryst. Growth 56, 389 (1982).

    Article  ADS  Google Scholar 

  22. H. J. Hinnenberg, M. Weidner, G. Hect, and C. Weissmantel, Thin Solid Films 33, 29 (1976).

    Article  ADS  Google Scholar 

  23. J. T. Khan, J. Appl. Phys. 44, 14 (1973).

    Article  ADS  Google Scholar 

  24. G. A. Unvala and K. Pearman, J. Mater. Sci. 5, 1016 (1970).

    Article  ADS  Google Scholar 

  25. HandBook of Thin Film Technology, Ed. by L. Meisel and R. Glang (McGraw-Hill, New York, 1970; Sov. Radio, Moscow, 1977).

    Google Scholar 

  26. A. J. Noreika and M. H. Francombe, J. Appl. Phys. 52, 7416 (1981).

    Article  ADS  Google Scholar 

  27. J. J. Harris, J. Mater. Sci.: Mater. Electron. 4, 93 (1993).

    ADS  Google Scholar 

  28. H.-J. Gossmann and E. F. Schubert, Crit. Rev. Solid State Mater. Sci. 18, 1 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pashchenko.

Additional information

Original Russian Text © A.S. Pashchenko, S.N. Chebotarev, L.S. Lunin, V.A. Irkha, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 4, pp. 553–556.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashchenko, A.S., Chebotarev, S.N., Lunin, L.S. et al. Specific features of doping with antimony during the ion-beam crystallization of silicon. Semiconductors 50, 545–548 (2016). https://doi.org/10.1134/S1063782616040199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616040199

Keywords

Navigation