Skip to main content
Log in

Diagnostics of the efficiency of surface plasmon-polariton excitation by quantum dots via polarization measurements of the output radiation

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is demonstrated that the efficiency of surface plasmon-polariton excitation at a metal-semiconductor interface by active quantum dots can be determined from measurements of the polarization characteristics of the output radiation. Experimentally, the proposed diagnostic method is based on finding the ratio of the intensities of the output radiation with polarizations orthogonal and parallel to the nanoheterostructure plane for two different distances between the quantum-dot layer and the metal-semiconductor interface. These data are then used to obtain the unknown parameters in the proposed mathematical model which makes it possible to calculate the rate of surface plasmon-polariton excitation by active quantum dots. As a result, this rate can be determined without complicated expensive equipment for fast time-resolved measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, Berlin, 2007), ch. 2.

    Google Scholar 

  2. D. Yu. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, Nano Lett. 12, 2459 (2012).

    Article  ADS  Google Scholar 

  3. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C.-Z. Ning, and M. K. Smit, Opt. Express 17, 11107 (2009).

    Article  ADS  Google Scholar 

  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).

    Article  ADS  Google Scholar 

  5. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460 (7259), 1110 (2009).

    Article  ADS  Google Scholar 

  6. I. V. Guk, G. A. Martsinovskii, G. D. Shandybina, and E. B. Yakovlev, Semiconductors 47, 1616 (2013).

    Article  ADS  Google Scholar 

  7. L. S. Maksimenko, I. E. Matyash, O. N. Mishchuk, S. P. Rudenko, and B. K. Serdega, Semiconductors 47, 925 (2013).

    Article  ADS  Google Scholar 

  8. C. Wang, H. J. Qu, W. X. Chen, G. Z. Ran, H. Y. Yu, B. Niu, J. Q. Pan, and W. Wang, Appl. Phys. Lett. 102, 061112 (2013).

    Article  ADS  Google Scholar 

  9. G. Z. Ran, D. F. Jiang, Q. Kan, and H. D. Chen, Appl. Phys. Lett. 97, 233304 (2010).

    Article  ADS  Google Scholar 

  10. A. A. Usikova, N. D. Il’inskaya, B. A. Matveev, T. V. Shubina, and P. S. Kop’ev, Semiconductors 47, 1570 (2013).

    Article  ADS  Google Scholar 

  11. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, Nature Mater. 9, 21 (2010).

    Article  ADS  Google Scholar 

  12. P. Neutens, L. Lagae, G. Borghs, and P. van Dorpe, Nano Lett. 10, 1429 (2010).

    Article  ADS  Google Scholar 

  13. R. A. Flynn, C. S. Kim, I. Vurgaftman, M. Kim, J. R. Meyer, A. J. Makinen, K. Bussmann, L. Cheng, F.-S. Choa, and J. P. Long, Opt. Express 19, 8954 (2011).

    Article  Google Scholar 

  14. X. J. Zhang, Y. C. Li, T. Li, S. Y. Lee, C. G. Feng, L. B. Wang, and T. Mei, Opt. Lett. 35, 3075 (2010).

    Article  ADS  Google Scholar 

  15. D. Costantini, L. Greusard, A. Bousseksou, R. Rungsawang, T. P. Zhang, S. Callard, J. Decobert, F. Lelarge, G.-H. Duan, Y. de Wilde, and R. Colombelli, Nano Lett. 12, 4693 (2012).

    Article  ADS  Google Scholar 

  16. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, Laser Photon. Rev. 7, 1 (2013).

    Article  Google Scholar 

  17. A. Chahboun, M. I. Vasilevskiy, N. V. Baidus, A. Cavaco, N. A. Sobolev, M. C. Carmo, E. Alves, and B. N. Zvonkov, J. Appl. Phys. 103, 083548 (2008).

    Article  ADS  Google Scholar 

  18. J. Kalkman, H. Gersen, L. Kuipers, and A. Polman, Phys. Rev. B 73, 075317 (2006).

    Article  ADS  Google Scholar 

  19. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  20. N. V. Baidus, B. N. Zvonkov, P. B. Mokeeva, E. A. Uskova, S. V. Tikhov, M. I. Vasilevskiy, M. J. M. Gomes, and S. A. Filonovich, Semicond. Sci. Technol. 19, S469 (2004).

    Article  ADS  Google Scholar 

  21. N. V. Baidus, M. I. Vasilevskiy, S. V. Khasanova, B. N. Zvonkov, H. P. van der Meulen, J. M. Calleja, and L. Vina, Europhys. Lett. 98, 27012 (2012).

    Article  ADS  Google Scholar 

  22. D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).

    Article  ADS  Google Scholar 

  23. N. Ashcroft and N. Mermin, Solid State Physics (Brooks Cole, Pacific Grove, 1976; Mir, Moscow, 1979), chs. 1, 2.

    Google Scholar 

  24. V. L. Ginzburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1987; Pergamon, Oxford, 1979), ch. 6.

    Google Scholar 

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Pergamon, New York, 1984), ch. 9.

    Google Scholar 

  26. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1982), chs. 1, 6.

    Google Scholar 

  27. I. A. Karpovich, B. N. Zvonkov, S. B. Levichev, N. V. Baidus, S. V. Tikhov, D. O. Filatov, A. P. Gorshkov, and S. Yu. Ermakov, Semiconductors 38, 431 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kukushkin.

Additional information

Original Russian Text © V.A. Kukushkin, N.V. Baidus, A.V. Zdoroveishchev, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 6, pp. 804–809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, V.A., Baidus, N.V. & Zdoroveishchev, A.V. Diagnostics of the efficiency of surface plasmon-polariton excitation by quantum dots via polarization measurements of the output radiation. Semiconductors 49, 785–790 (2015). https://doi.org/10.1134/S1063782615060123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615060123

Keywords

Navigation