Skip to main content
Log in

Features of molecular-beam epitaxy and structural properties of AlInSb-based heterostructures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

AlInSb layers are grown on highly lattice-mismatched GaAs (100) substrates by molecular-beam epitaxy (MBE) and studied in situ by reflection high-energy electron diffraction and ex situ by scanning and transmission electron microscopy (SEM and TEM). It is shown that one feature of AlInSb/GaAs heterostructure features is a high probability of forming microtwins; methods for decreasing their concentration are proposed. To initiate AlInSb growth on GaAs substrates under high lattice-mismatch (∼14.5%) conditions and to stimulate the transition to 2D growth, the GaAs layer surface was preliminarily exposed to an antimony flux followed by deposition of an intermediate AlSb buffer layer. The optimization of initial MBE growth stages of Sb-containing layers on the GaAs surface allows a decrease in the defect density in the GaAs/AlInSb heterostructures more than by two orders of magnitude, including a drastic decrease in the microtwin density. Optimal MBE growth conditions for Al x Al1 − x Sb are determined in a wide composition range (0 < x < 0.3). The TEM and SEM studies confirm the high structural quality of grown GaAs/AlInSb heterostructures. Hall-effect measurements showed the dependence of the carrier mobility and concentration on the aluminum content in AlInSb layers and allowed preliminary conclusions on scattering mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naohiro Kuze and Ichiro Shibasaki, III-Vs Rev. 10, 28 (1997).

    Article  Google Scholar 

  2. P. J. Treado, I. W. Levin, and E. N. Lewis, Appl. Spectr. 48, 607 (1994).

    Article  ADS  Google Scholar 

  3. P. V. Biryulin, V. I. Turinov, and E. B. Yakimov, Semi-conductors 38, 480 (2004).

    ADS  Google Scholar 

  4. J. R. Soderstrom, J. Y. Yao, and T. G. Andersson, Appl. Phys. Lett. 58, 708 (1991).

    Article  ADS  Google Scholar 

  5. T. Ashley, L. Buckle, and S. Dutta, Electron. Lett. 43, 777 (2007).

    Article  Google Scholar 

  6. K. J. Goldammer, S. J. Chung, W. K. Liul, M. B. Santos, J. L. Hicks, S. Raymond, and S. Q. Murphy, J. Cryst. Growth 201–202, 753 (1999).

    Article  Google Scholar 

  7. S. V. Ivanov, A. A. Boudza, R. N. Kutt, N. N. Ledentsov, B. Ya. Meltser, S. V. Shaposhnikov, S. S. Ruvimov, and P. S. Kop’ev, J. Cryst. Growth 156, 191 (1995).

    Article  ADS  Google Scholar 

  8. P. V. Neklyudov, S. V. Ivanov, B. Ya. Mel’tser, and P. S. Kop’ev, Semiconductors 31, 893 (1997).

    Article  Google Scholar 

  9. H. T. Pham, S. F. Yoon, D. Boning, and S. Wicaksono, J. Vac. Sci. Technol. B 25, 11 (2007).

    Article  Google Scholar 

  10. L. J. Whitman, B. R. Bennett, E. M. Kneedler, B. T. Jonker, and B. V. Shanabrook, Surf. Sci. 436, L707 (1999).

    Article  Google Scholar 

  11. M. W. Wang, D. A. Collins, T. C. McGill, and R. W. Grant, J. Vac. Sci. Technol. B 11, 1418 (1993); T. Brown, A. Brown, and G. May, J. Vac. Sci. Technol. B 20, 1771 (2002).

    Article  Google Scholar 

  12. V. A. Solov’ev, O. G. Lyublinskaya, B. Ya. Meltser, A. N. Semenov, D. D. Solnyshkov, A. A. Toropov, S. V. Ivanov, and P. S. Kop’ev, Appl. Phys. Lett. 86, 011109–11 (2005).

    Article  ADS  Google Scholar 

  13. N. D. Mishima, J. C. Keay, N. Goel, M. A. Ball, S. J. Ching, M. B. Johnson, and M. B. Santos, J. Cryst. Growth 251, 551 (2003).

    Article  ADS  Google Scholar 

  14. M. A. Ball, J. C. Keay, S. J. Chung, M. B. Santos, and M. B. Johnson, Appl. Phys. Lett. 80, 2138 (2002).

    Article  ADS  Google Scholar 

  15. J. Boucart, C. Starck, A. Plais, E. Derouin, C. Fortin, F. Gaborit, A. Pinquier, L. Goldstein, D. Carpentier, and J. Jacquet, Electron. Lett. 34, 2133 (1998).

    Article  Google Scholar 

  16. C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, IEEE Trans. Electron. Dev. 52, 1055 (2005).

    Article  ADS  Google Scholar 

  17. D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Gueva, and I. Adesida, Electron. Lett. 35, 1854 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Semenov.

Additional information

Original Russian Text © A.N. Semenov, B.Ya. Meltser, V.A. Solov’ev, T.A. Komissarova, A.A. Sitnikova, D.A. Kirylenko, A.M. Nadtochyi, T.V. Popova, P.S. Kop’ev, S.V. Ivanov, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 10, pp. 1379–1385.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semenov, A.N., Meltser, B.Y., Solov’ev, V.A. et al. Features of molecular-beam epitaxy and structural properties of AlInSb-based heterostructures. Semiconductors 45, 1327–1333 (2011). https://doi.org/10.1134/S1063782611100150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611100150

Keywords

Navigation