Skip to main content
Log in

Nanotube-based three-dimensional albumin composite obtained using continuous laser radiation

  • Nanotechnology
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The possibility of developing three-dimensional nanostructures for damaged bone and tissue restoration, including treatment of human congenital malformation is considered. Four types of multiwalled and single-walled carbon nanotubes fabricated by chemical vapor deposition via disproportionation on Fe clusters and thermal cathode sputtering in an inert gas were studied. The nanomaterial’s topography was studied by atomic-force microscopy. The possibility of using 3D nanocomposites as a biosolder for laser biowelding of cartilaginous tissue was shown. The compatibility of biological tissues with a nanocomposite material in vivo introduced under the perichondrium of ear cartilage of a rabbit was validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fukushima, A. Kosaka, Y. Ishumura, et al., Science 300(5628), 2072–2074 (2003).

    Article  ADS  Google Scholar 

  2. W. Dong, A. Cogbill, T. Zhang, et al., J. Phys. Chem. B 110, 16819–16822 (2006).

    Article  Google Scholar 

  3. É. G. Rakov, Nanotubes and Fullerens, the School-book (Universit. Kniga, Logos, Moscow, 2006) [in Russian].

    Google Scholar 

  4. G. M. Russotti and W. Harris, Orthopaedic Trans. 12, 901–906 (1988).

    Google Scholar 

  5. M. P. Mattson, R. C. Haddon, and A. M. Rao, J. Mol. Neurosci. 14(3), 175–182 (2000).

    Article  Google Scholar 

  6. L. P. Zanello, V. Zhao, N. Ni, and R. C. Naddon, Nano Lett. 6, 562–567 (2006).

    Article  ADS  Google Scholar 

  7. A. V. Tausenev, E. D. Obraztsova, A. S. Lobaz, et al., Kvant. Élektron. 37, 205–208 (2007) [Quantum Electron. 37, 205 (2007)].

    Article  Google Scholar 

  8. V. M. Podgaetskii, V. V. Savranskii, M. M. Simunin, and M. A. Kononov, Kvant. Élektron. 37, 801–803 (2007) [Quantum Electron. 37, 801 (2007)].

    Article  Google Scholar 

  9. N. I. Bobrinetskii, V. K. Nevolin, and M. M. Simunin, Khim. Tekhnol. 8(2), 58–63 (2007).

    Google Scholar 

  10. M. L. Shofner, V. N. Khabashesku, and E. V. Barrera, Chem. Mater. 18, 906–913 (2006).

    Article  Google Scholar 

  11. C. Journet, W. K. Maser, P. Bernier, et al., Nature 388(21), 56–58 (1997); www.nanocarblab.com.

    Google Scholar 

  12. M. V. P. Minaev, Kvant. Élektron. 35, 976–983 (2005) [Quantum Electron. 35, 976 (2005)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Nevolin.

Additional information

Original Russian Text © S.A. Ageeva, I.I. Bobrinetskii, V.K. Nevolin, V.M. Podgaetskii, S.V. Selishchev, M.M. Simunin, V.I. Konov, V.V. Savranskii, 2009, published in Izvestiya vysshikh uchebnykh zavedenii. Elektronika, 2009, Vol. 43, No. 13.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ageeva, S.A., Bobrinetskii, I.I., Nevolin, V.K. et al. Nanotube-based three-dimensional albumin composite obtained using continuous laser radiation. Semiconductors 43, 1714–1718 (2009). https://doi.org/10.1134/S1063782609130211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782609130211

Keywords

Navigation