Skip to main content
Log in

Study of the Formation Time of a Self-Sustained Subnanosecond Discharge at High and Ultrahigh Gas Pressures

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The formation times of self-sustained subnanosecond discharges in nitrogen at pressures of 1‒40 atm and in hydrogen at pressures of 1–60 atm are analyzed in terms of the avalanche model. In experiments, a subnanosecond voltage pulse with an amplitude of 102 ± 2 kV was applied to a 0.5-mm-long discharge gap with a uniformly distributed electric field (the curvature radii of both the cathode and anode ends were 1 cm). The rise time of the voltage pulse from 0.1 to 0.9 of its amplitude value was about 250 ps. Breakdown occurred at the leading edge of the pulse. The discharge formation time was measured at different gas pressures with a step of 5–10 atm. Analysis of the experimental results shows that, in nitrogen at pressures of 10–40 atm and in hydrogen at pressures of 20–50 atm, breakdown occurs earlier than the electron avalanche reaches its critical length and that the critical avalanche length lies in the range of (2–8) × 10–2 mm, which is one order of magnitude shorter than the discharge gap length. This means that the avalanche–streamer model is inapplicable in this case. The fast formation of a conducting channel under these conditions can be explained by ionization of gas by runaway electrons. In this case, the conducting column develops as a result of simultaneous development of a large number of electron avalanches in the gas volume. An increase in the hydrogen pressure from 50 to 60 atm leads to an abrupt increase in the discharge formation time by about 50%. As a result, the growth time of the electron avalanche to its critical length becomes shorter than the discharge formation time. In this case, the electrons cease to pass into the runaway regime and the discharge is initiated from the cathode due to field emission from microinhomogeneities on its surface. Under these conditions, the discharge formation time is well described by the avalanche–streamer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. D. Korolev and G. A. Mesyats, Physics of Pulsed Gas Breakdown (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  2. Electrical Breakdown of Gases, Ed. by J. M. Meek and J. D. Craggs (Wiley, New York, 1978).

    MATH  Google Scholar 

  3. G. A. Mesyats, Yu. I. Bychkov, and V. V. Kremnev, Sov. Phys. Usp. 15, 282 (1972).

    Article  ADS  Google Scholar 

  4. R. C. Fletcher, Phys. Rev. 76, 1501 (1949).

    Article  ADS  Google Scholar 

  5. P. Felsenthal and J. M. Proud, Phys. Rev. 139, A1796 (1965).

    Article  ADS  Google Scholar 

  6. G. A. Mesyats, Yu. I. Bychkov, and A. M. Iskol’dskii, Sov. Phys. Tech. Phys. 13, 1051 (1968).

    Google Scholar 

  7. V. F. Tarasenko, D. V. Beloplotov, and M. I. Lomaev, Plasma Phys. Rep. 41, 832 (2015).

    Article  ADS  Google Scholar 

  8. Yu. D. Korolev and N. M. Bykov, IEEE Trans. Plasma Sci. 40, 2443 (2012).

    Article  ADS  Google Scholar 

  9. Yu. D. Korolev, N. M. Bykov, and S. N. Ivanov, Plasma Phys. Rep. 34, 1022 (2008).

    Article  ADS  Google Scholar 

  10. S. N. Ivanov, E. A. Litvinov, and V. G. Shpak, Tech. Phys. Lett. 32, 745 (2006).

    Article  ADS  Google Scholar 

  11. S. N. Ivanov and K. A. Sharypov, Tech. Phys. Lett. 42, 274 (2016).

    Article  ADS  Google Scholar 

  12. S. N. Ivanov and K. A. Sharypov, Izv. Vyssh. Uchebn. Zaved., Fizika 57 (12/2), 186 (2014).

    Google Scholar 

  13. S. N. Ivanov and K. A. Sharypov, Izv. Vyssh. Uchebn. Zaved., Fizika 58 (12/2), 137 (2015).

    Google Scholar 

  14. S. N. Ivanov and K. A. Sharypov, Tech. Phys. 60, 1478 (2015).

    Article  Google Scholar 

  15. M. I. Yalandin and V. G. Shpak, Instrum. Exp. Tech. 44, 285 (2001).

    Article  Google Scholar 

  16. A. N. Dyad’kov, S. N. Ivanov, and M. R. Ul’maskulov, Instrum. Exp. Tech. 41, 358 (1998).

    Google Scholar 

  17. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  18. A. M. Efremov, B. M. Koval’chuk, and Yu. D. Korolev, Tech. Phys. 57, 478 (2012).

    Article  Google Scholar 

  19. V. L. Granovskii, Electrical Current in Gas: Steady-State Current (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  20. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

    Google Scholar 

  21. Yu. D. Korolev and G. A. Mesyats, Field-Emission and Explosive Processes in Gas Discharges (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  22. S. N. Ivanov, J. Phys. D 46, 285201 (2013).

    Article  Google Scholar 

  23. S. N. Ivanov and V. V. Lisenkov, Tech. Phys. 55, 53 (2010).

    Article  Google Scholar 

  24. S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, Tech. Phys. 53, 1162 (2008).

    Article  Google Scholar 

  25. S. N. Ivanov, V. V. Lisenkov, and V. G. Shpak, J. Phys. D 43, 315204 (2010).

    Article  ADS  Google Scholar 

  26. S. N. Ivanov, Phys. Doklady 49, 701 (2004).

    Article  ADS  Google Scholar 

  27. V. V. Lisenkov and V. A. Shklyaev, Tech. Phys. 59, 1780 (2014).

    Article  Google Scholar 

  28. V. V. Lisenkov and V. A. Shklyaev, Phys. Plasmas 22, 113507 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ivanov.

Additional information

Original Russian Text © S.N. Ivanov, V.V. Lisenkov, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 3, pp. 323–332.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, S.N., Lisenkov, V.V. Study of the Formation Time of a Self-Sustained Subnanosecond Discharge at High and Ultrahigh Gas Pressures. Plasma Phys. Rep. 44, 369–377 (2018). https://doi.org/10.1134/S1063780X18030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18030042

Navigation