Skip to main content
Log in

Nonlinear propagation of ion-acoustic waves through the Burgers equation in weakly relativistic plasmas

  • Oscillations and Waves in Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the (G'/G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Michel, Theory of Neutron Star Magnetosphere (Univ. Press Chicago, Chicago, 1991).

    Google Scholar 

  2. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  3. H. R. Miller and P. J. Witta, Active Galactic Nuclei (Springer, Berlin, 1987), p. 202.

    Google Scholar 

  4. M. L. Burns, Positron-Electron Pairs in Astrophysics (AIP, Melville, NY, 1983).

    Google Scholar 

  5. P. K. Shukla, N. N. Rao, M. Y. Yu, and N. L. Tsintsadze, Phys. Rep. 138, 1 (1986).

    Article  ADS  Google Scholar 

  6. B. Shen and J. Meyer-ter-Vehn, Phys. Rev. E 65, 016405 (2001).

    Article  ADS  Google Scholar 

  7. X. Wang, R. Ischebeck, P. Muggli, T. Katsouleas, C. Joshi, W. B. Mori, and M. J. Hogan, Phys. Rev. Lett. 101, 124801 (2008).

    Article  ADS  Google Scholar 

  8. A. Spitkovsky, Astrophys. J. 673, L39 (2008).

    Article  ADS  Google Scholar 

  9. S. Poornakala, A. Das, P. K. Kaw, A. Sen, Z. M. Sheng, Y. Sentoku, K. Mima, and K. Nishikawa, Phys. Plasmas 9, 3802 (2002).

    Article  ADS  Google Scholar 

  10. J. N. Mohanty and K. C. Baral, Phys. Plasmas 3, 804 (1996).

    Article  ADS  Google Scholar 

  11. T. S. Gill, A. Singh, H. Kaur, N. S. Saini, and P. Bala, Phys. Lett. A 361, 364 (2007).

    Article  ADS  Google Scholar 

  12. T. S. Gill, A. S. Bains, and N. S. Saini, Can. J. Phys. 87, 861 (2009).

    Article  ADS  Google Scholar 

  13. M. G. Hafez and M. R. Talukder, Astrophys. Space Sci. 359, 27 (2015).

    Article  ADS  Google Scholar 

  14. R. Saeed, A Shah, and M. Noaman-ul-Haq, Phys. Plasmas 17, 102301 (2010).

    Article  ADS  Google Scholar 

  15. M. G. Hafez, M. Talukder, and R. Rand Sakthivel, Indian J. Phys. A 90, 603 (2016).

    Article  ADS  Google Scholar 

  16. F. D. Steffen and M. H. Thoma, Phys. Lett. A 510, 98 (2001).

    Article  Google Scholar 

  17. A. A. Mamun and P. K. Shukla, Phys. Lett. A 374, 472 (2010).

    Article  ADS  Google Scholar 

  18. P. Muggli, S. F. Martins, J. Vieira, and L. O. Silva. http://arxiv.org/pdf/1306.4380v1.

  19. A. A. Sahai and T. C. Katsouleas. http://arxiv.org/pdf/1504.03735.pdf.

  20. G. Sarri, K. Poder, J. M. Cole, W. Schumaker, A. D. Piazza, B. Reville, T. Dzelzainis, D. Doria, L. A. Gizzi, G. Grittani, S. Kar, C. H. Keitel, K. Krushelnick, S. Kuschel, S. P. D. Mangles, et al., Nature Comm. 6, 6747 (2015).

    Article  Google Scholar 

  21. S. Corde, E. Adli, J. M. Allen, W. An, C. I. Clarke, C. E. Clayton, J. P. Delahaye, J. Frederico, S. Gessner, S. Z. Green, M. J. Hogan, C. Joshi, N. Lipkowitz, M. Litos, W. Lu, et al., Nature 524, 442 (2015).

    Article  ADS  Google Scholar 

  22. A. Shah and R. Saeed, Phys. Lett. A 373, 4164 (2009).

    Article  ADS  Google Scholar 

  23. S. Ghosh and R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008).

    Article  ADS  Google Scholar 

  24. H. R. Pakzad, Phys. Lett. A 373, 847 (2009).

    Article  ADS  Google Scholar 

  25. H. R. Pakzad and M. Tribeche, J. Fusion Energy 32, 171 (2013).

    Article  ADS  Google Scholar 

  26. M. G. Hafez, M. R. Talukder, and M. H. Ali, Phys. Plasmas 23, 012902 (2016).

    Article  ADS  Google Scholar 

  27. M. L. Wang, X. Z. Li, and J. Zhang, Phys. Lett. A 372, 417 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Silva, A. R. Plastino, and J. A. S. Lima, Phys. Lett. A 249, 401 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  29. D. K. Ghosh, G. Mandal, P. Chatterjee, and U. N. Ghosh, IEEE Trans. Plasma Sci. 41, 1600 (2013).

    Article  ADS  Google Scholar 

  30. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Hafez.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafez, M.G., Talukder, M.R. & Hossain Ali, M. Nonlinear propagation of ion-acoustic waves through the Burgers equation in weakly relativistic plasmas. Plasma Phys. Rep. 43, 499–509 (2017). https://doi.org/10.1134/S1063780X17040031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17040031

Navigation