Skip to main content
Log in

Formation of self-consistent pressure profiles in simulation of turbulent convection in tokamak plasmas

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The formation of pressure profiles in turbulent tokamak plasmas in ohmic heating regimes and transient regimes induced by turning-on of electron-cyclotron resonance (ECR) heating is investigated. The study is based on self-consistent modeling of low-frequency turbulent plasma convection described by an adiabatically reduced set of hydrodynamic-type equations. The simulations show that, in the ohmic heating stage, turbulence forms and maintains profiles of the total plasma pressure corresponding to turbulentrelaxed states. These profiles are close to self-consistent profiles of the total plasma pressure experimentally observed on the T-10 tokamak in ohmic regimes with different values of the safety factor q L at the limiter. Simulations of nonstationary regimes induced by turning-on of on- and off-axis ECR heating show that the total plasma pressure profiles in the transient regimes remain close to those in the turbulent-relaxed state, as well as to the profiles experimentally observed on T-10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. R. Wade and DIII-D Team, Nucl. Fusion 47, 543 (2007).

    Article  ADS  Google Scholar 

  2. H. Takenaga and JT-60 Team, Nucl. Fusion 47, 563 (2007).

    Article  ADS  Google Scholar 

  3. O. Gruber for the ASDEX Upgrade Team, Nucl. Fusion 47, 622 (2007).

  4. H. Yamada, J. H. Harris, A. Dinklage, E. Ascasibar, F. Sano, S. Okamura, J. Talmadge, U. Stroth, A. Kus, S. Murakami, M. Yokoyama, C. D. Beidler, V. Tribaldos, K. Y. Watanabe, and Y. Suzuki, Nucl. Fusion 45, 1684 (2005).

    Article  ADS  Google Scholar 

  5. O. Motojima, H. Yamada, A. Komori, N. Ohyabu, T. Mutoh, O. Kaneko, K. Kawahata, T. Mito, K. Ida, S. Imagawa, Y. Nagayama, T. Shimozuma, K. Y. Watanabe, S. Masuzaki, J. Miyazawa, et al., Nucl. Fusion 47, 668 (2007).

    Article  ADS  Google Scholar 

  6. T. Cho, J. Kohagura, T. Numakura, M. Hirata, H. Higaki, H. Hojo, M. Ichimura, K. Ishii, K. Md. Islam, A. Itakura, I. Katanuma, R. Minami, Y. Nakashima, T. Saito, Y. Tatematsu, et al., Phys. Rev. Lett. 97, 055001 (2006).

    Article  ADS  Google Scholar 

  7. T. Cho, V. P. Pastukhov, W. Horton, T. Numakura, M. Hirata, J. Kohagura, N. V. Chudin, and J. Pratt, Phys. Plasmas 15, 056120 (2008).

    Article  ADS  Google Scholar 

  8. R. J. Hawryluk, Nucl. Fusion 51, 094005 (2011).

    Article  ADS  Google Scholar 

  9. B. D. Scott, Plasma Phys. Controlled Fusion 48, B277 (2006).

    Article  Google Scholar 

  10. Y. Idomura, H. Urano, N. Aiba, and S. Tokuda, Nucl. Fusion 49, 065029 (2009).

    Article  ADS  Google Scholar 

  11. X. Garbet, Nucl. Fusion 51, 094003 (2011).

    Article  ADS  Google Scholar 

  12. V. P. Pastukhov, JETP Lett. 67, 940 (1998).

    Article  ADS  Google Scholar 

  13. V. P. Pastukhov, Plasma Phys. Rep. 26, 529 (2000).

    Article  ADS  Google Scholar 

  14. V. P. Pastukhov and N. V. Chudin, Plasma Phys. Rep. 27, 907 (2001).

    Article  ADS  Google Scholar 

  15. V. P. Pastukhov and N. V. Chudin, in Proceedings of the 19th International Conference on Fusion Energy, Lyon, 2002, Paper TH/2-5, http://www-pub.iaea.org/MTCD/publications/PDF/csp_019c/pdf/th2_5.pdf

  16. V. P. Pastukhov and N. V. Chudin, JETP Lett. 82, 356 (2005).

    Article  ADS  Google Scholar 

  17. V. P. Pastukhov, Plasma Phys. Rep. 31, 577 (2005).

    Article  ADS  Google Scholar 

  18. V. P. Pastukhov and N. V. Chudin, Trans. Fusion Sci. Technol. 51, 34 (2007).

    Google Scholar 

  19. V. P. Pastukhov and N. V. Chudin, Trans. Fusion Sci. Technol. 59, 84 (2011).

    Google Scholar 

  20. V. P. Pastukhov and N. V. Chudin, in Proceedings of the 22nd IAEA Fusion Energy Conference, Geneva, 2008, Paper TCH/P8-26, http://www-naweb.iaea.org/napc/physics/FEC/FEC2008/papers/th_p8-26.pdf

  21. V. P. Pastukhov and N. V. Chudin, JETP Lett. 90, 561 (2009).

    Google Scholar 

  22. V. P. Pastukhov and N. V. Chudin, in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, 2010, Paper THC/P4-22, http://www-naweb.iaea.org/napc/physics/FEC/FEC2010/papers/thc_p4-22.pdf

  23. V. P. Pastukhov, N. V. Chudin, and D. V. Smirnov, Plasma Phys. Controlled Fusion 53, 054015 (2011).

    Article  ADS  Google Scholar 

  24. V. V. Yankov and J. Nycander, Phys. Plasmas 4, 2907 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  25. V. P. Pastukhov, N. V. Chudin, and D. V. Smirnov, in Proceedings of the 38th EPS Conference on Plasma Physics, Strasbourg, 2011, ECA 35G, P4.136 (2011), http://ocs.ciemat.es/EPS2011PAP/pdf/P4.136.pdf

    Google Scholar 

  26. V. P. Pastukhov and D. V. Smirnov, in Proceedings of the 39th EPS Conference on Plasma Physics & 16th International Congress on Plasma Physics, Stokholm, 2012, ECA 36F, P4.065 (2012), http://ocs.ciemat.es/epsicpp2012-pap/pdf/P4.065.pdf

    Google Scholar 

  27. B. Coppi, Comm. Plasma Phys. Controlled Fusion 5, 261 (1880).

    Google Scholar 

  28. Yu. V. Esiptchuk and K. A. Razumova, Plasma Phys. Controlled Fusion 28, 1253 (1986).

    Article  ADS  Google Scholar 

  29. K. A. Razumova, V. F. Andreev, A. J. H. Donné, G. M. D. Hogeweij, S. E. Lysenko, D. A. Shelukhin, G. W. Spakman, V. A. Vershkov, and V. A. Zhuravlev, Plasma Phys. Controlled Fusion 48, 1373 (2006).

    Article  ADS  Google Scholar 

  30. K. A. Razumova, V. F. Andreev, A. Yu. Dnestrovskij, A. Ya. Kislov, N. A. Kirneva, S. E. Lysenko, Yu. D. Pavlov, V. I. Poznyak, T. V. Shafranov, E. V. Trukhina, V. A. Zhuravlev, A. J. H. Donné, and G. M. D. Hogeweij, Plasma Phys. Controlled Fusion 50, 105004 (2008).

    Article  ADS  Google Scholar 

  31. D. Biscamp, Comm. Plasma Phys. Controlled Fusion 10, 165 (1886).

    Google Scholar 

  32. B. B. Kadomtsev, Sov. J. Plasma Phys. 13, 443 (1987).

    Google Scholar 

  33. Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, S. E. Lysenko, S. V. Cherkasov, and M. J. Walsh, Plasma Phys. Rep. 30, 1 (2004).

    Article  ADS  Google Scholar 

  34. Yu. N. Dnestrovskij, A. Yu. Dnestrovskij, and S. E. Lysenko, Plasma Phys. Rep. 31, 529 (2005).

    Article  ADS  Google Scholar 

  35. G. V. Pereverzev and P. N. Yushmanov, IPP-Report No. 282186 (Max-Planck-Institut für Plasmaphysik, Garching, 2002), http://edoc.mpg.de/282186

  36. S. I. Braginskii, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 205.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Pastukhov.

Additional information

Original Russian Text © V.P. Pastukhov, D.V. Smirnov, 2016, published in Fizika Plazmy, 2016, Vol. 42, No. 4, pp. 307–320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, V.P., Smirnov, D.V. Formation of self-consistent pressure profiles in simulation of turbulent convection in tokamak plasmas. Plasma Phys. Rep. 42, 307–318 (2016). https://doi.org/10.1134/S1063780X16040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X16040061

Keywords

Navigation