Skip to main content
Log in

Variational Methods in the Quantum Mechanical Three-Body Problem with a Coulomb Interaction

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The variational Rayleigh–Ritz method for bound states in nonrelativistic quantum mechanics is formulated and the mathematical foundations of the method are discussed. A review of the most frequently used methods for constructing the Ritz variational basis is given on the example of the helium atom. Numerous applications of variational methods to solving the quantum mechanical three-body bound state problem are considered, and a comparison of the most accurate calculations for various physical systems is given. As a generalization of the variational Rayleigh–Ritz method to “quasi-bound” states (resonances), the complex coordinate rotation (CCR) method and its application to calculating various characteristics of resonances are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. In the same work, one can find an exhaustive bibliography on issues concerning the integral (and exponential in particular) expansion of the variational function.

REFERENCES

  1. C. Schwartz, “Further computations of the He atom ground state,” arXiv:math-ph/0605018.

  2. L. I. Ponomarev, “Muon catalysed fusion,” Contemp. Phys. 31, 219 (1991).

    Article  ADS  Google Scholar 

  3. T. Yamazaki, N. Morita, R. S. Hayano, E. Widmann, and J. Eades, “Antiprotonic helium,” Phys. Rep. 366, 183 (2002).

    Article  ADS  Google Scholar 

  4. M. Hori et al., “Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio,” Nature 475, 484 (2011).

    Article  Google Scholar 

  5. M. Hori et al., “Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio,” Science 354, 610 (2016).

    Article  ADS  Google Scholar 

  6. J. L. Friar, “The structure of light nuclei and its effect on precise atomic measurements,” Can. J. Phys. 80, 1337 (2002).

    Article  ADS  Google Scholar 

  7. I. Sick, “Precise root-mean-square radius of \(^{4}\)He,” Phys. Rev. C 77, 041302 (2008).

    Article  ADS  Google Scholar 

  8. J. J. Krauth et al. “Measuring the \(\alpha \)-particle charge radius with muonic helium-4 ions,” Nature 589, 527 (2020).

    Article  ADS  Google Scholar 

  9. E. A. Hylleraas, “Über den Grundzustand des Heliumatoms,” Z. Physik. 48, 469 (1928); “Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium,” Z. Physik. 54, 347 (1929).

    Article  ADS  MATH  Google Scholar 

  10. L. I. Schiff, Quantum Mechanics (New York, McGraw-Hill, 1949).

    Google Scholar 

  11. T. Kinoshita, “Ground state of the helium atom,” Phys. Rev. 105, 1490 (1957).

    Article  ADS  MATH  Google Scholar 

  12. C. L. Pekeris, “Ground state of two-electron atoms,” Phys. Rev. 112, 1649 (1958); “\({{1}^{1}}S\) and \({{2}^{3}}S\) states of helium,” Phys. Rev. 115, 1216 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Reed and B. Simon, IV: Analysis of Operators (Academic Press, 1978; Moscow, Mir, 1982).

  14. T. Kato, “Fundamental properties of Hamiltonian operators of Schrödinger type,” Trans. Amer. Math. Soc. 70, 195 (1951);

    MathSciNet  MATH  Google Scholar 

  15. T. Kato, “On the existence of solutions of the helium wave equation,” Trans. Amer. Math. Soc. 70, 212 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  16. R. E. Stanton and S. Havriliak, J. Chem. Phys. 81, 1910 (1984);

    Article  ADS  Google Scholar 

  17. S. P. Goldman, Phys. Rev. A 28, 2552 (1984);

    Google Scholar 

  18. J. D. Talman, Phys. Rev. Lett. 57, 1091 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. N. Hill and C. Krauthauser, “A solution to the problem of variational collapse for the one-particle Dirac equation,” Phys. Rev. Lett. 72, 2151 (1994).

    Article  ADS  Google Scholar 

  20. I. P. Grant and H. M. Quiney, “Rayleigh–Ritz approximation of the Dirac operator in atomic and molecular physics,” Phys. Rev. A 62, 022508 (2000).

    Article  ADS  Google Scholar 

  21. J. H. Bartlett, J. J. Gibbons, and C. G. Dunn, “The normal helium atom,” Phys. Rev. 47, 679 (1935).

    Article  ADS  MATH  Google Scholar 

  22. J. H. Bartlett, “The helium wave equation,” Phys. Rev. 51, 661 (1937).

    Article  ADS  MATH  Google Scholar 

  23. V. A. Fock, “On the Schrödinger equation for the helium atom,” Izv. Akad. Nauk. Fiz. XVIII, 161 (1954).

    Google Scholar 

  24. H. M. Schwartz, “Ritz–Hylleraas solutions of the ground state of two-electron atoms involving fractional powers,” Phys. Rev. 120, 483 (1960).

    Article  ADS  Google Scholar 

  25. K. Frankowski and C. L. Pekeris, “Logarithmic terms in the wave functions of the ground state of two-electron atoms.” Phys. Rev. 146, 46 (1966).

    Article  ADS  Google Scholar 

  26. C. Schwartz, “Experiment and theory in computations of the He atom ground state,” arXiv:physics/0208004; C. Schwartz, “Experiment and theory in computations of the He atom ground state,” Int. J. Mod. Phys. E 15, 877 (2006).

  27. W. Kolos, C. C. J. Roothaan, and R. A. Sack, “Ground state of systems of three particles with Coulomb interaction, Rev. Mod. Phys. 32, 178 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, New-Jersey, Hong Kong, 1988)

  29. R. A. Sack, C. C. J. Roothaan, and W. Kolos, “Recursive evaluation of some atomic integrals,” J. Math. Phys. 8, 1093 (1967).

    Article  ADS  Google Scholar 

  30. G. W. F. Drake, “Angular integrals and radial recurrence relations for two-electron matrix elements in Hylleraas coordinates,” Phys. Rev. A 18, 820 (1978).

    Article  ADS  Google Scholar 

  31. V. D. Efros, “Three-body problem. Generalized exponential expansion,” Zh. Eksp. Teor. Fiz. 90, 10 (1985).

    Google Scholar 

  32. A. Halpern “\({{(p\mu p)}^{ + }}\) molecule; muon capture in hydrogen,” Phys. Rev. Lett. 13, 660 (1964).

    Article  ADS  Google Scholar 

  33. S. I. Vinitskii, V. I. Korobov, and I. V. Puzynin, “Variational calculation of energy levels of \(\mu \)-mesomolecules of hydrogen isotopes, Zh. Eksp. Teor. Fiz. 91, 705 (1986).

    Google Scholar 

  34. V. I. Korobov, I. V. Puzynin, and S. I. Vinitsky, “Bound states of hydrogen mesic molecular ions: Variational approach. Muon Catal. Fusion,” 7, 63–80 (1992).

    Google Scholar 

  35. S. I. Vinitskii, V. I. Korobov, and I. V. Puzynin, “Variational calculation of the characteristics of weakly bound rotational-oscillatory state of \(dd\mu \) and \(dt\mu \) mesomolecules,” JINR Rapid Communications, No. 19-86 (1986).

  36. S. I. Vinitskii, V. I. Korobov, and I. V. Puzynin, “Refinement of the energy levels of weakly bound rotational-oscillatory state of \(dd\mu \) and \(dt\mu \) mesomolecules,” JINR Rapid Communications, No. 23-87 (1987).

  37. V. I. Korobov, I. V. Puzynin, and S. I. Vinitsky, “A variational calculation of weakly bound rotational-vibrational states of the mesic molecules \(dd\mu \) and \(dt\mu \), Phys. Lett. B 196, 272 (1987).

    Article  ADS  Google Scholar 

  38. T. Kato, “On the eigenfunctions of many-particle systems in quantum mechanics,” Commun. Pure Appl. Math. 10, 151 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  39. V. I. Kukulin and V. M. Krasnopol’sky, “A stochastic variational method for few-body systems,” J. Phys. G: Nucl. Phys. 3, 795 (1977).

    Article  ADS  Google Scholar 

  40. K. Varga and Y. Suzuki, “Precise solution of few-body problems with the stochastic variational method on a correlated Gaussian basis,” Phys. Rev. C 52, 2885 (1995).

    Article  ADS  Google Scholar 

  41. J. Mitroj, S. Bubin, W. Horiuchi, Ya. Suzuki, L. Adamowicz, W. Cencek, K. Szalewicz, J. Komasa, D. Blume, and K. Varga, “Theory and application of explicitly correlated Gaussians,” Rev. Mod. Phys. 85, 693 (2013).

    Article  ADS  Google Scholar 

  42. B. P. Carter, “Muonic molecules and nucleon-deuteron capture,” Phys. Rev. 141, 863 (1966).

    Article  ADS  Google Scholar 

  43. C. M. Rosenthal, “The reduction of the multi-dimensional Schrödinger equation to a one-dimensional integral equation,” Chem. Phys. Lett. 10, 381 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  44. R. L. Somorjai and J. D. Power, “The dimensional and numerical equivalence of the space-filling-curve approach and multi-dimensional integration methods for integral-transform trial functions,” Chem. Phys. Lett. 12, 502 (1972);

    Article  ADS  MathSciNet  Google Scholar 

  45. J. D. Power and R. L. Somorjai, “Upper and lower bounds to the eigenvalues of two-electron atoms: Proof that the \({{2}^{{1,3}}}S\) states of H\(^{ - }\) are not bound,” Phys. Rev. A 5, 2401 (1972).

    Article  ADS  Google Scholar 

  46. J. J. Griffin and J. A. Wheeler, “Collective motions in nuclei by the method of generator coordinates,” Phys. Rev. 108, 311 (1957).

    Article  ADS  MATH  Google Scholar 

  47. A. J. Thakkar and V. H. Smith Jr., “Compact and accurate integral-transform wave functions. I. The \({{1}^{1}}S\) state of the helium-like ions from H\(^{ - }\) through Mg\(^{{10 + }}\),” Phys. Rev. A 15, 1 (1977).

    Article  ADS  Google Scholar 

  48. S. A. Alexander and H. J. Monkhorst, “High-accuracy calculation of muonic molecules using random-tempered basis sets,” Phys. Rev. A 38, 26 (1988).

    Article  ADS  Google Scholar 

  49. T. K. Rebane and O. N. Yusupov, “Complex exponential basis wave functions in a Coulomb three-body problem,” Sov. Phys. JETP 71, 1050–1054 (1990).

    ADS  Google Scholar 

  50. V. I. Korobov, D. Bakalov, and H. J. Monkhorst, “Variational expansion for the antiprotonic helium atoms,” Phys. Rev A 59, R919 (1999).

    Article  ADS  Google Scholar 

  51. A. M. Frolov and V. H. Smith Jr., “Universal variational expansion for three-body systems,” J. Phys. B 28, L449 (1995).

    Article  ADS  Google Scholar 

  52. V. I. Korobov, “Coulomb three-body bound-state problem: Variational calculations of nonrelatistic energies,” Phys. Rev. A 61, 064503 (2000).

    Article  ADS  Google Scholar 

  53. V. Korobov, “Nonrelativistic ionization energy for the helium ground state,” Phys. Rev. A 66, 024501 (2002).

    Article  ADS  Google Scholar 

  54. D. H. Bailey, “Multiprecision translation and execution of Fortran programs,” ACM Trans. Math. Software 19, 288 (1993); “A Fortran 90-based multiprecision system,” 21, 379 (1995).

  55. S. P. Goldman, “Uncoupling correlated calculations in atomic physics: Very high accuracy and ease,” Phys. Rev. A 57, R677 (1998).

    Article  ADS  Google Scholar 

  56. B. Grémaud, D. Delande, and N. Billy, “Highly accurate calculation of the energy levels of the H\(_{2}^{ + }\) molecular ion,” J. Phys. B: At. Mol. Opt. Phys. 31, 383 (1998).

    Article  ADS  Google Scholar 

  57. T. K. Rebane and A. V. Filinskii, “Energies of symmetric three-particle Coulomb systems,” Phys. At. Nucl. 60, 1816–1822 (1997).

    Google Scholar 

  58. R. E. Moss, “Energies of low-lying vibration-rotation levels of H\(_{2}^{ + }\) and its isotopomers,” J. Phys. B: At. Mol. Opt. Phys. 32, L89 (1999).

    Article  ADS  Google Scholar 

  59. G. W. F. Drake and Yan Zong-Chao, “Energies and relativistic corrections for the Rydberg states of helium: Variational results and asymptotic analysis,” Phys. Rev. A 46, 2378 (1992).

    Article  ADS  Google Scholar 

  60. A. M. Frolov, “Bound-state properties of the positronium negative ion Ps\(^{ - }\),” Phys. Rev. A 60, 2834 (1999).

    Article  ADS  Google Scholar 

  61. Y. Kino, M. Kamimura, and H. Kudo, “High-accuracy 3-body coupled-channel calculation of metastable states of antiprotonic helium atoms,” Nucl. Phys. A 631, 649 (1998).

    Article  ADS  Google Scholar 

  62. R. E. Moss, “Calculations for the vibration-rotation levels of H\(_{2}^{ + }\) in its ground and first excited electronic states,” Mol. Phys. 80, 1541 (1993).

    Article  ADS  Google Scholar 

  63. H. Nakashima and H. Nakatsuji, “Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method,” J. Chem. Phys. 127, 224104 (2007).

    Article  ADS  Google Scholar 

  64. D. T. Aznabaev, A. K. Bekbaev, and V. I. Korobov, “Nonrelativistic energy levels of helium atoms,” Phys. Rev. A 98, 012510 (2018).

    Article  ADS  Google Scholar 

  65. H. Li, J. Wu, B.-L. Zhou, J.-M. Zhu, and Z.-C. Yan, “Calculations of energies of the hydrogen molecular ion,” Phys. Rev. A 75, 012504 (2007).

    Article  ADS  Google Scholar 

  66. Y. Hijikata, H. Nakashima, and H. Nakatsuji, “Solving non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method,” J. Chem. Phys. 130, 024102 (2009).

    Article  ADS  Google Scholar 

  67. Ye Ning and Zong-Chao Yan, “Variational energy bounds for the hydrogen molecular ion,” Phys. Rev. A 90, 032516 (2014).

    Article  ADS  Google Scholar 

  68. J. Aguilar and J. M. Combes, “A class of analytic perturbations for one-body Schrödinger Hamiltonians,” Commun. Math. Phys. 22, 269 (1971).

    Article  ADS  MATH  Google Scholar 

  69. B. Simon, “Resonances in \(n\)-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory,” Ann. Math. 97, 247 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  70. E. Balslev and J. M. Combes, “Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions,” Commun. Math. Phys. 22, 280 (1971).

    Article  ADS  MATH  Google Scholar 

  71. Y. K. Ho, “The method of complex coordinate rotation and its applications to atomic collision processes,” Phys. Rep. 99, 1 (1983).

    Article  ADS  Google Scholar 

  72. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry (Springer, 1987; Moscow, Mir, 1990).

  73. V. I. Korobov, “Coulomb predissociation rates of He\(d\mu \) molecular ions,” Hyperfine Interact. 101/102, 329–332 (1996).

    Article  ADS  Google Scholar 

  74. H. Feshbach, “A unified theory of nuclear reactions,” Ann. Phys. (N.Y.) 5, 357 (1958);

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Ann. Phys. (N.Y.) 19, 287 (1962).

  76. V. I. Korobov, “Bethe logarithm for resonant states: Antiprotonic helium,” Phys. Rev. A 89, 014501 (2014).

    Article  ADS  Google Scholar 

  77. R. J. Drachman, “A new global operator for two-particle delta functions,” J. Phys. B: At. Mol. Opt. Phys. 14, 2733 (1981).

    Article  ADS  Google Scholar 

  78. K. Pachucki, W. Cencek, and J. Komasa, “On the acceleration of the convergence of singular operators in Gaussian basis sets,” J. Chem. Phys. 122, 184101 (2005).

    Article  ADS  Google Scholar 

  79. L. N. Bogdanova, V. I. Korobov, and L. I. Ponomarev, “Nuclear fusion rates from resonant states of \(^{3}\)He\(d\mu \) molecular ion,” Hyperfine Interact. 118, 183 (1999).

    Article  ADS  Google Scholar 

  80. L. I. Ponomarev and S. I. Vinnitskii, “Adiabatic representation in the three body problem with Coulomb interaction, Fiz. Elem. Chastits At. Yadra 13, 1336 (1982).

    Google Scholar 

  81. P. Froelich and S. A. Alexander, “Structure and dynamics of the doubly excited helium atom,” Phys. Rev. A 42, 2550 (1990).

    Article  ADS  Google Scholar 

  82. V. I. Korobov, “Regular and singular integrals for relativistic and QED matrix elements of the Coulomb three-body problem, for an exponential basis set,” J. Phys. B: At. Mol. Opt. Phys. 35, 1959 (2002).

    ADS  Google Scholar 

  83. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York: Dover, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Korobov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Appendices

APPENDIX A

ANALYTICAL CALCULATION OF MATRIX ELEMENTS FOR HYLLERAAS VARIATIONAL EXPANSION

The presentation follows [77].

A1. Basic Recurrence Relation

To calculate integrals of radial variables, we should be able to calculate

$${{\Gamma }_{{lm}}}(\alpha ,\beta ) = {{\left( { - \frac{\partial }{{\partial \alpha }}} \right)}^{l}}{{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{m}}\frac{{f(\alpha ,\beta )}}{{\alpha + \beta }}.$$
(A.1)

By Leibniz’s theorem, we have

$$\begin{gathered} {{\Gamma }_{{lm}}}(\alpha ,\beta ) = \sum\limits_{\begin{subarray}{l} \lambda + \lambda {\kern 1pt} ' = l \\ \mu + \mu \,' = m \end{subarray}} {\frac{{l!}}{{\lambda !\lambda {\kern 1pt} '!}}} \frac{{m!}}{{\mu !\mu {\kern 1pt} '!}}\frac{{(\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} ')!}}{{{{{(\alpha + \beta )}}^{{\lambda {\kern 1pt} '\, + \mu {\kern 1pt} '\,\, + 1}}}}} \\ \times \,\,{{\left( { - \frac{\partial }{{\partial \alpha }}} \right)}^{\lambda }}{{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{\mu }}f(\alpha ,\beta ). \\ \end{gathered} $$

Further, using the recurrence relation for binomial coefficients,

$$\begin{gathered} \frac{{(\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} ')!}}{{\lambda {\kern 1pt} '!\mu {\kern 1pt} '!}} = C_{{\lambda {\kern 1pt} '\, + \,\mu {\kern 1pt} '\,\, - 1}}^{{\lambda {\kern 1pt} '}} \\ + \,\,C_{{\lambda {\kern 1pt} '\, + \,\mu {\kern 1pt} '\, - 1}}^{{\lambda {\kern 1pt} '\,\, - 1}} = \frac{{(\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} '\,\, - 1)!}}{{\lambda {\kern 1pt} '!(\mu {\kern 1pt} '\,\, - 1)!}} + \frac{{(\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} '\,\, - 1)!}}{{(\lambda {\kern 1pt} '\,\, - 1)!\mu {\kern 1pt} '!}}, \\ \end{gathered} $$

we obtain

$$\begin{gathered} {{\Gamma }_{{lm}}} = \sum\limits_{\begin{subarray}{l} \lambda + \lambda {\kern 1pt} ' = l \\ \mu + \mu {\kern 1pt} ' = m \end{subarray}} {\left[ {\frac{{l!}}{{\lambda !(\lambda {\kern 1pt} '\,\, - 1)!}}\frac{{m!}}{{\mu !\mu {\kern 1pt} '!}}\frac{{(\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} '\,\, - 1)!}}{{{{{(\alpha + \beta )}}^{{\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} ' + 1}}}}}} \right.} \\ \left. { + \,\,\frac{{l!}}{{\lambda !\lambda {\kern 1pt} '!}}\frac{{m!}}{{\mu !(\mu {\kern 1pt} '\,\, - 1)!}}\frac{{(\lambda {\kern 1pt} '\,\, + \mu {\kern 1pt} '\,\, - 1)!}}{{{{{(\alpha + \beta )}}^{{\lambda {\kern 1pt} '\,\, + \,\,\mu {\kern 1pt} ' + 1}}}}}} \right] \\ \times \,\,{{\left( { - \frac{\partial }{{\partial \alpha }}} \right)}^{\lambda }}{{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{\mu }}f(\alpha ,\beta ), \\ \end{gathered} $$

whence, applying Leibniz’s theorem again, we arrive at the final expression:

$$\begin{gathered} {{\Gamma }_{{lm}}}(\alpha ,\beta ) = \frac{1}{{\alpha + \beta }} \\ \times \,\,\left[ {l{{\Gamma }_{{l - 1,m}}} + m{{\Gamma }_{{l,m - 1}}} + {{{\left( { - \frac{\partial }{{\partial \alpha }}} \right)}}^{l}}{{{\left( { - \frac{\partial }{{\partial \beta }}} \right)}}^{m}}f(\alpha ,\beta )} \right]. \\ \end{gathered} $$
(A.2)

A2. Singular Integrals of the Form \(( - 1,m,n)\)

A generating function similar to (17) is obtained by direct integration analytically:

$$\begin{gathered} {{\Gamma }_{{ - 1,00}}}\alpha ,\beta ,\gamma ) = \int {\int {\frac{1}{{{{r}_{1}}}}} } {{e}^{{ - \alpha {{r}_{1}} - \beta {{r}_{2}} - \gamma {{r}_{{12}}}}}}d{{r}_{1}}d{{r}_{2}}d{{r}_{{12}}} \\ = \int\limits_0^\infty {d{{r}_{1}}} \left\{ {\left( {\int\limits_0^{{{r}_{1}}} {d{{r}_{2}}} \int\limits_{{{r}_{1}} - {{r}_{2}}}^{{{r}_{1}} + {{r}_{2}}} {d{{r}_{{12}}}} + \int\limits_{{{r}_{1}}}^\infty {d{{r}_{2}}} \int\limits_{{{r}_{2}} - {{r}_{1}}}^{{{r}_{1}} + {{r}_{2}}} {d{{r}_{{12}}}} } \right)\frac{{{{e}^{{ - \alpha {{r}_{1}} - \beta {{r}_{2}} - \gamma {{r}_{{12}}}}}}}}{{{{r}_{1}}}}} \right\} \\ = \frac{{\ln(\alpha + \beta ) - \ln(\alpha + \gamma )}}{{(\beta - \gamma )(\beta + \gamma )}}. \\ \end{gathered} $$
(A.3)

Using (A.3), other integrals of the form \(( - 1,m,n)\) can be obtained by differentiation:

$$\begin{gathered} {{\Gamma }_{{ - 1,mn}}} = {{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{m}}{{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{n}}{{\Gamma }_{{ - 1,00}}} \\ = {{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{m}}{{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{n}}\frac{{\ln(\alpha + \beta ) - \ln(\alpha + \gamma )}}{{(\beta - \gamma )(\beta + \gamma )}}. \\ \end{gathered} $$
(A.4)

Unfortunately, the method used to generate regular functions \({{\Gamma }_{{lmn}}}(\alpha ,\beta ,\gamma )\) cannot be used directly in this case. The factor \({1 \mathord{\left/ {\vphantom {1 {(\beta - \gamma )}}} \right. \kern-0em} {(\beta - \gamma )}}\) makes the recursion unstable.

To overcome this difficulty, we rewrite expression (A.4), assuming that \(\beta > \gamma \), in the form

$$\begin{gathered} {{\Gamma }_{{ - 1,mn}}} = {{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{m}}{{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{n}} \\ \times \,\,\left\{ {\frac{1}{{(\alpha + \gamma )(\beta + \gamma )}}\left[ {{{{\left( {\frac{{\beta - \gamma }}{{\alpha + \gamma }}} \right)}}^{{ - 1}}}\ln\left( {1 + \frac{{\beta - \gamma }}{{\alpha + \gamma }}} \right)} \right]} \right\}, \\ \end{gathered} $$
(A.5)

and introduce a new variable \(u = {{(\beta - \gamma )} \mathord{\left/ {\vphantom {{(\beta - \gamma )} {(\alpha + \gamma )}}} \right. \kern-0em} {(\alpha + \gamma )}}\); then, the following recurrent scheme can be suggested:

$$\begin{array}{*{20}{c}} {{{\Gamma }_{{ - 1,mn}}} = \frac{1}{{\beta + \gamma }}\left[ {m{{\Gamma }_{{ - 1,m - 1,n}}} + n{{\Gamma }_{{ - 1,m,n - 1}}} + {{D}_{{mn}}}} \right],} \\ {{{D}_{{mn}}} = {{{\left( { - \frac{\partial }{{\partial \beta }}} \right)}}^{m}}{{{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}}^{n}}\frac{1}{{(\alpha + \gamma )}}\left[ {{{u}^{{ - 1}}}\ln(1 + u)} \right],} \\ {{{D}_{{mn}}} = \frac{1}{{\alpha + \gamma }}\left[ {n{{D}_{{m,n - 1}}} + {{C}_{{mn}}}} \right],} \\ {{{C}_{{mn}}} = {{{\left( { - \frac{\partial }{{\partial \beta }}} \right)}}^{m}}{{{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}}^{n}}\left[ {{{u}^{{ - 1}}}\ln(1 + u)} \right].} \end{array}$$
(A.6)

To generate the array \({{C}_{{mn}}}\), it is convenient to first differentiate with respect to \(\gamma \), which is given by the recurrence relation,

$${{C}_{{mn}}} = \frac{1}{{\alpha + \gamma }}[(m + n - 1){{C}_{{m,n - 1}}} - (\alpha + \beta ){{C}_{{m + 1,n - 1}}}]{\kern 1pt} ,$$

which requires filling a triangular array \((m,n)\) with \(m,n = 1, \ldots ,M + N\) and \(m + n \leqslant M + N\). The first layer is specified as

$${{C}_{{m0}}} = {{\left( { - \frac{\partial }{{\partial \beta }}} \right)}^{m}}\left[ {{{u}^{{ - 1}}}\ln(1 + u)} \right] = \frac{{{{g}_{m}}(u)}}{{{{{(\alpha + \gamma )}}^{m}}}}.$$

Finally, we will define the recursion required to compute a one-dimensional array of functions \({{g}_{m}}\):

$$\begin{gathered} {{g}_{m}}(u) = {{\left( { - \frac{d}{{du}}} \right)}^{m}}\left[ {{{u}^{{ - 1}}}\ln(1 + u)} \right], \\ {{g}_{m}} = \frac{m}{u}{{g}_{{m - 1}}} + \frac{1}{u}{{f}_{m}}{\kern 1pt} , \\ {{f}_{m}}(u) = {{\left( { - \frac{d}{{du}}} \right)}^{m}}\ln(1 + u) = - \frac{{(m - 1)!}}{{{{{(1 + u)}}^{m}}}}, \\ \end{gathered} $$
(A.7)

which completes the construction of a recurrent scheme for the analytical calculation of integrals of the form \(( - 1,m,n)\). However, when \(u\) is small, forward recursion (A.7) becomes unstable. In this case, it is better to use recursion in the opposite direction:

$${{g}_{{m - 1}}} = \frac{1}{m}\left( {u{{g}_{m}} - {{f}_{m}}} \right),\,\,\,m = M,M - 1, \ldots ,$$
(A.7a)

where \(M\) is chosen in such a way that, if \({{g}_{M}}\) is set to zero, then the error introduced by the value of \({{g}_{M}}\) at this step has decreased to machine epsilon during the backward recursion, by the time when the required value of \(m\) is reached. In particular, when \(u = 0\) (or \(\beta = \gamma \), which is typical of physical systems containing identical particles), we obtain

$${{\Gamma }_{{ - 1,00}}}(\alpha ,\beta ,\gamma ) = \frac{1}{{(\alpha + \beta )\beta }} = \frac{1}{{(\alpha + \gamma )\gamma }},$$

which allows us to get rid of the indeterminate forms \({0 \mathord{\left/ {\vphantom {0 0}} \right. \kern-0em} 0}\) during the calculation.

A3. Singular Integrals of the Form \(( - 1, - 1,n)\)

The next step is to calculate singular integrals of the form \({{\Gamma }_{{ - 1, - 1,n}}}(\alpha ,\beta ,\gamma )\), which are required, e.g., for obtaining the mean value of the operator \({{{\mathbf{p}}}^{4}}\). Let us start again with the generating function

$$\begin{gathered} \begin{array}{*{20}{c}} {{{\Gamma }_{{ - 1, - 1,0}}}(\alpha ,\beta ,\gamma ) = \frac{1}{{4\gamma }}{{{\left\{ {\left[ {\ln \left( {\frac{{\alpha + \gamma }}{{\beta + \gamma }}} \right)} \right]} \right.}}^{2}}} \end{array} \\ + \,\,2\left. {\left[ {{\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\alpha + \gamma }}} \right) + {\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right)} \right] + \frac{{{{\pi }^{2}}}}{3}} \right\}. \\ \end{gathered} $$
(A.8)

Here, dilog(x) is the dilogarithm function as defined in the Abramowitz and Stegun reference book [78] (see Appendix B). Next, the computational scheme is defined as follows:

$$\begin{gathered} {{\Gamma }_{{ - 1, - 1,n}}}(\alpha ,\beta ,\gamma ) = {{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{n}}{{\Gamma }_{{ - 1, - 1,0}}}(\alpha ,\beta ,\gamma ) \\ = {{\gamma }^{{ - 1}}}\left[ {n{{\Gamma }_{{ - 1, - 1,n - 1}}} - {{B}_{n}}} \right], \\ \end{gathered} $$
(A.9)

where

$$\begin{gathered} {{B}_{n}} = - {{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{n}}\frac{1}{4}\left\{ {{{{\left[ {\ln\left( {\frac{{\alpha + \gamma }}{{\beta + \gamma }}} \right)} \right]}}^{2}}} \right. \\ + \,\,2\left. {\left[ {{\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\alpha + \gamma }}} \right) + {\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right)} \right] + \frac{{{{\pi }^{2}}}}{3}} \right\} \\ = {{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{{n - 1}}}\left[ {\frac{\alpha }{{{{\alpha }^{2}} - {{\gamma }^{2}}}}\ln\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right)} \right. \\ + \,\,\left. {\frac{\beta }{{{{\beta }^{2}} - {{\gamma }^{2}}}}\ln\left( {\frac{{\alpha + \beta }}{{\alpha + \gamma }}} \right)} \right] \\ = {{\left( { - \frac{\partial }{{\partial \gamma }}} \right)}^{{n - 1}}}\left\{ {\frac{\alpha }{{(\alpha + \gamma )(\beta + \gamma )}}[{{v}^{{ - 1}}}\ln(1 + v)]} \right. \\ + \,\,\left. {\frac{\beta }{{(\alpha + \gamma )(\beta + \gamma )}}[{{u}^{{ - 1}}}\ln(1 + u)]} \right\}, \\ \end{gathered} $$
(A.9a)

where \(u = {{(\beta - \gamma )} \mathord{\left/ {\vphantom {{(\beta - \gamma )} {(\alpha + \gamma )}}} \right. \kern-0em} {(\alpha + \gamma )}}\) and \(v = {{(\alpha - \gamma )} \mathord{\left/ {\vphantom {{(\alpha - \gamma )} {(\beta + \gamma )}}} \right. \kern-0em} {(\beta + \gamma )}}\). The final expression, written in the last line of Eq. (A.9), gives a stable recurrent relation if only the function \({{g}_{0}}(u) = {{u}^{{ - 1}}}\ln(1 + u)\) and its derivatives are calculated in the same way as in the previous section.

A4. Other Singular Integrals

Singular integrals of the form \({{\Gamma }_{{ - 2,m,n}}}(\alpha ,\beta ,\gamma )\) are not integrable, but they usually only occur in combinations such as \({{\Gamma }_{{ - 2,m + 2,n}}} - {{\Gamma }_{{ - 2,m,n + 2}}}\), which have finite values. In this situation, it is required to find such a generating function that would give the correct value for the combinations representing the integrands. In this section, we present expressions only for generating functions \({{\Gamma }_{{ - 2,m,n}}}(\alpha ,\beta ,\gamma )\) and other singular integrals in a form suitable for calculations:

$$\begin{gathered} {{\Gamma }_{{ - 2,00}}} = - \frac{{(\alpha + \beta )\ln(\alpha + \beta ) - (\alpha + \gamma )\ln(\alpha + \gamma )}}{{{{\beta }^{2}} - {{\gamma }^{2}}}} \\ = - \left[ {\frac{\alpha }{{\beta + \gamma }} + \frac{1}{2}} \right]\frac{{\ln(\alpha + \beta ) - \ln(\alpha + \gamma )}}{{\beta - \gamma }} \\ - \,\,\frac{{\ln(\alpha + \beta ) + \ln(\alpha + \gamma )}}{{2(\beta + \gamma )}}. \\ \end{gathered} $$
(A.10a)
$$\begin{gathered} {{\Gamma }_{{ - 3,00}}} = - \frac{\alpha }{{2(\beta + \gamma )}} + \left[ {\frac{{{{\alpha }^{2}}}}{{2(\beta + \gamma )}} + \frac{\alpha }{2} + \frac{{{{\beta }^{2}} + {{\gamma }^{2}}}}{{4(\beta + \gamma )}}} \right] \\ \times \,\,\frac{{\ln(\alpha + \beta ) - \ln(\alpha + \gamma )}}{{\beta - \gamma }} + \left[ {\frac{\alpha }{{2(\beta + \gamma )}} + \frac{1}{4}} \right] \\ \times \,\,\left[ {\ln(\alpha + \beta ) + \ln(\alpha + \gamma )} \right]. \\ \end{gathered} $$
(A.10b)
$$\begin{gathered} {{\Gamma }_{{ - 4,00}}} = \frac{{5{{\alpha }^{2}}}}{{12(\beta + \gamma )}} + \frac{1}{6}\alpha - \frac{1}{{12}}\left[ {\frac{{2{{\alpha }^{3}}}}{{\beta + \gamma }}} \right. \\ + \left. {3{{\alpha }^{2}} + 3\alpha \frac{{{{\beta }^{2}} + {{\gamma }^{2}}}}{{\beta + \gamma }} + ({{\beta }^{2}} - \beta \gamma + {{\gamma }^{2}})} \right] \\ \times \,\,\frac{{\ln(\alpha + \beta ) - \ln(\alpha + \gamma )}}{{\beta - \gamma }} - \frac{1}{{12}} \\ \times \,\,\left[ {\frac{{3{{\alpha }^{2}}}}{{\beta + \gamma }} + 3\alpha + \frac{{{{\beta }^{2}} + \beta \gamma + {{\gamma }^{2}}}}{{\beta + \gamma }}} \right] \\ \times \,\,\left[ {\ln(\alpha + \beta ) + \ln(\alpha + \gamma )} \right]. \\ \end{gathered} $$
(A.10c)
$$\begin{array}{*{20}{c}} \begin{gathered} {{\Gamma }_{{ - 2, - 1,0}}} = \frac{1}{2}l{{n}^{2}}(\beta + \gamma ) + {\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right) \hfill \\ - \,\,\frac{{\left( {\alpha + \gamma } \right)}}{{4\gamma }}\left\{ {{{{\left[ {\ln\left( {\frac{{\alpha + \gamma }}{{\beta + \gamma }}} \right)} \right]}}^{2}}} \right. \hfill \\ \end{gathered} \\ { + \,\,2\left. {\left[ {{\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\alpha + \gamma }}} \right) + {\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right)} \right] + \frac{{{{\pi }^{2}}}}{3}} \right\}.} \end{array}$$
(A.11a)
$$\begin{gathered} {{\Gamma }_{{ - 3, - 1,0}}} = \frac{{(\alpha + \beta )[1 - \ln(\alpha + \beta )]}}{2} \\ + \,\,\frac{{\alpha \ln(\beta + \gamma )[1 - \ln(\beta + \gamma )]}}{2} \\ - \,\,\alpha {\kern 1pt} {\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right) + \frac{{{{{\left( {\alpha + \gamma } \right)}}^{2}}}}{{8\gamma }}\left\{ {\mathop {\left[ {\ln\left( {\frac{{\alpha + \gamma }}{{\beta + \gamma }}} \right)} \right]}\nolimits^2 } \right. \\ + \,\,2\left[ {{\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\alpha + \gamma }}} \right) + {\text{dilog}}\left( {\frac{{\alpha + \beta }}{{\beta + \gamma }}} \right)} \right] + \left. {\frac{{{{\pi }^{2}}}}{3}} \right\}. \\ \end{gathered} $$
(A.11b)

The last two equations are used in the calculation of the Bethe logarithm when calculating the kinetic energy operator for a basis that includes singular terms of the form \(r_{i}^{{ - 1}}{{e}^{{ - {{\alpha }_{i}}{{r}_{1}} - {{\beta }_{i}}{{r}_{2}} - {{\gamma }_{i}}{{r}_{{12}}}}}}\) in expansion (22).

To get rid of polynomials in \(\alpha \), \(\beta \), and \(\gamma \) in the numerator of complex expressions, one can use the following recursion:

$$\begin{gathered} {{( - {{\partial }_{\gamma }})}^{n}}[(\alpha + \gamma )f(\gamma )] \\ = - n{{( - {{\partial }_{\gamma }})}^{{n - 1}}}f(\gamma ) + (\alpha + \gamma ){{( - {{\partial }_{\gamma }})}^{n}}f(\gamma ). \\ \end{gathered} $$

When tabulating \({{\Gamma }_{{lmn}}}\) in the required range of integer parameters \((l,m,n)\), one can then use the general scheme described in [27, 28] to calculate the matrix elements for states with an arbitrary total angular momentum.

APPENDIX B

DILOGARITHM

In this appendix, a convenient way to calculate the dilogarithm function with high precision is presented.

For the dilogarithm function, we use the definition from the Abramowitz and Stegun reference book [78]:

$$\begin{gathered} {\text{dilog}}(x) = \int\limits_1^x {\frac{{\ln(t)}}{{1 - t}}} dt = \sum\limits_{k = 1}^\infty {\frac{{{{{(1 - x)}}^{k}}}}{{{{k}^{2}}}}} , \\ {\text{dilog}}{\kern 1pt} {\text{'}}{\kern 1pt} (x) = \frac{{\ln x}}{{1 - x}}. \\ \end{gathered} $$
(B.1)

The dilogarithm satisfies the functional relations

$$\begin{array}{*{20}{c}} {{\text{dilog}}(x) + {\text{dilog}}(1 - x) = - \ln x\ln(1 - x) + \frac{{{{\pi }^{2}}}}{6},} \\ {{\text{dilog}}(x) + {\text{dilog}}({{x}^{{ - 1}}}) = - {{{{{(\ln x)}}^{2}}} \mathord{\left/ {\vphantom {{{{{(\ln x)}}^{2}}} 2}} \right. \kern-0em} 2},} \end{array}$$
(B.2)

which allow one to define the function on the entire complex plane, while it is already defined on the set \(D = \{ x:\left| {x - 1} \right| \leqslant 1,\,\,\operatorname{Re} (x) \geqslant {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}\} \). Next, we use the relation of the dilogarithm with the Debye function:

$${\text{dilog}}({{e}^{{ - z}}}) = \int\limits_0^z {\frac{{tdt}}{{{{e}^{t}} - 1}}} ,$$
(B.3)

when the set \(D\) is mapped into \(\left| z \right| < 2\pi \). Finally, the Debye function can be calculated on \(\left| z \right| < 2\pi \) using a rapidly converging power series:

$$\int\limits_0^z {\frac{{{{t}^{n}}dt}}{{{{e}^{t}} - 1}}} = {{z}^{n}}\left[ {\frac{1}{n} - \frac{z}{{2(n + 1)}} + \sum\limits_{k = 1}^\infty \,\frac{{{{B}_{{2k}}}{{z}^{{2k}}}}}{{(2k + n)(2k)!}}} \right],$$
(B.4)

where \({{B}_{{2k}}}\) are the Bernoulli numbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobov, V.I. Variational Methods in the Quantum Mechanical Three-Body Problem with a Coulomb Interaction. Phys. Part. Nuclei 53, 1–20 (2022). https://doi.org/10.1134/S1063779622010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622010038

Navigation