Skip to main content
Log in

Series anomalies of low multipoles of WMAP and Planck missions: What are they?

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We consider the main anomalies of cosmic microwave background observed at low multipoles of the WMAP and Planck cosmic missions. The possible origin of these features is discussed. We study difference between WMAP and Planck data which is apparently connected with the local sources emission and/or systematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Bennett, M. Halpern, G. Hinshaw, et al. (WMAP Collaboration), “First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results,” Astrophys. J. Suppl. 148, 1 (2003) (arXiv:astro-ph/0302207).

    Article  ADS  Google Scholar 

  2. C. L. Bennett, R. S. Hill, G. Hinshaw, et al. (WMAP Collaboration), “First-year Wilkinson microwave anisotropy probe (WMAP) observations: foreground emission,” Astrophys. J. Suppl. 148, 97 (2003) (arXiv:astro-ph/0302208).

    Article  ADS  Google Scholar 

  3. D. N. Spergel, L. Verde, H. V. Peiris, et al. (WMAP Collaboration), “First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters,” Astrophys. J. Suppl. 148, 175 (2003) (arXiv:astro-ph/0302209).

    Article  ADS  Google Scholar 

  4. G. Hinshaw, D. N. Spergel, L. Verde, et al. (WMAP Collaboration), “Three-year Wilkinson microwave anisotropy probe (WMAP) observations: temperature analysis,” Astrophys. J. Suppl. 170, 288 (2007) (arXiv:astro-ph/0603451).

    Article  ADS  Google Scholar 

  5. D. N. Spergel et al. (WMAP Collaboration), “Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology,” Astrophys. J. Suppl. 170, 377 (2007) (arXiv:astro-ph/0603449).

    Article  ADS  Google Scholar 

  6. G. Hinshaw, J. L. Weiland, R. S. Hill, et al. (WMAP Collaboration), “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: data processing, sky maps, and basic results,” Astrophys. J. Suppl. 180, 225 (2009) (arXiv:astro-ph/0803.073).

    Article  ADS  Google Scholar 

  7. E. Komatsu et al. (WMAP Collaboration), “Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation,” Astrophys. J. Suppl. 180, 330 (2009) (arXiv:0803.0547).

    Article  ADS  Google Scholar 

  8. N. Jarosik, C. L. Bennett, J. Dunkley, et al. (WMAP Collaboration), “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results,” Astrophys. J. Suppl. 192, 14 (2011) (arXiv:1001.4744).

    Article  ADS  Google Scholar 

  9. C. L. Bennett, D. Larson, J. L. Weiland, et al., “Nineyear Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results,” Astrophys. J. Suppl. 208, 20 (2013) (arXiv:1212.5225).

    Article  ADS  Google Scholar 

  10. P. A. R. Ade et al. (Plank Collaboration), “Planck 2013 results. I. Overview of products and scientific results,” Accepted in Astron. Astrophys. (2013) (arXiv:1303.5062).

    Google Scholar 

  11. C. L. Bennett, R. S. Hill, G. Hinshaw, et al. (WMAP Collaboration), “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies?” Astrophys. J. Suppl. 192, 17 (2011) (arXiv:1001.4758).

    Article  ADS  Google Scholar 

  12. K. Land and J. Magueijo, “Examination of evidence for a preferred axis in the cosmic radiation anisotropy,” Phys. Rev. L 95g, 1301 (2004).

    Google Scholar 

  13. M. Cruz, E. Martinez-Gonzalez, P. Vielva, and L. Cayon, “Detection of a non-Gaussian spot in WMAP,” MNRAS 356, 29 (2005).

    Article  ADS  Google Scholar 

  14. J. Kim and P. Naselsky, “Anomalous parity asymmetry of the Wilkinson microwave anisotropy probe power spectrum data at low multipoles,” Astrophys. J. 714, L265 (2010).

    Article  ADS  Google Scholar 

  15. H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gorski, and P. B. Lilje, “Asymmetries in the cosmic microwave background anisotropy field,” Astrophys. J. 605, 14 (2004).

    Article  ADS  Google Scholar 

  16. P. A. R. Ade et al. (Planck Collaboration), “Planck 2013 results. XXIII. Isotropy and statistics of the CMB,” Accepted in Astron. Astrophys. (2003) (arXiv:1303.5083).

    Google Scholar 

  17. S. M. Leach et al. (Plank Collaboration), “Component separation methods for the PLANCK mission,” Astron. Astrophys. 491, 597 (2008) (arXiv:0805.0269).

    Article  ADS  Google Scholar 

  18. C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, “On the large-angle anomalies of the microwave sky,” MNRAS 367, 79 (2006) (arXiv:astroph/0508047).

    Article  ADS  Google Scholar 

  19. A. Gruppuso and C. Burigana, “Large scale alignment anomalies of CMB anisotropies: a new test for residuals applied to WMAP 5yr maps,” JCAP 08, 004 (2009).

    Article  ADS  Google Scholar 

  20. C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, “No large-angle correlations on the non-galactic microwave sky,” MNRAS 399, 295 (2009).

    Article  ADS  Google Scholar 

  21. C.-G. Park, C. Park, and J. R. Gott III, “Cleaned 3 year Wilkinson microwave anistropy probe cosmic microwave background map: magnitude of the quadrupole and alignment of large-scale modes,” Astrophys. J. 660, 959 (2007) (arXiv:astro-ph/0608129).

    Article  ADS  Google Scholar 

  22. T. R. Jaffe, A. J. Banday, H. K. Eriksen, K. M. Górski, and F. K. Hansen, “Bianchi type VIIh models and the WMAP 3-year data,” Astron. Astrophys. 460, 393 (2006).

    Article  ADS  Google Scholar 

  23. M. Demianski and A. G. Doroshkevich, “Extensions of the standard cosmological model: anisotropy, rotation, and the magnetic field,” Phys. Rev. D 751, 3517 (2007).

    MathSciNet  Google Scholar 

  24. T. Koivisto and D. F. Mota, “Anisotropic dark energy: dynamics of the background and perturbations,” JCAP 06, 018 (2008).

    Article  ADS  Google Scholar 

  25. P. D. Naselsky and O. V. Verkhodanov, “Do we need to correct the internal linear combination quadrupole” Astrophys. Bull. 62, 203 (2007).

    Article  ADS  Google Scholar 

  26. P. D. Naselsky, O. V. Verkhodanov, and M. T. B. Nielsen, “Instability of reconstruction of the low CMB multipoles,” Astrophys. Bull. 63, 216 (2008) (arXiv:0707.1484).

    Article  ADS  Google Scholar 

  27. A. G. Doroshkevich and O. V. Verkhodanov, “CMB component separation in the pixel domain,” Phys. Rev. D 83, 3002 (2011) (arxiv:1008.4094).

    Article  ADS  Google Scholar 

  28. C. J. Copi, D. Huterer, D. J. Schwarz, and G. D. Starkman, “Large-scale alignments from WMAP and Planck,” arXiv:1311.4562.

  29. L. Rudnick, S. Brown, and L. R. Williams, “Extragalactic radio sources and the WMAP cold spot,” Astrophys. J. 671, 40 (2007) (arXiv:0704.0908).

    Article  ADS  Google Scholar 

  30. J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick, “The NRAO VLA sky survey,” Astronom. J. 115, 1693 (1998).

    Article  ADS  Google Scholar 

  31. M. Cruz, N. Turok, P. Vielva, E. Martinez-Gonzalez, M. Hobson, et al., “A cosmic microwave background feature consistent with a cosmic texture,” Science 318, 1612 (2007) (arXiv:0710.5737).

    Article  ADS  Google Scholar 

  32. T. Jaffe, A. J. Banday, H. K. Eriksen, K. M. Górski, and F. K. Hansen, “Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?” Astrophys. J. 629, L1 (2005) (arXiv:astro-ph/0503213).

    Article  ADS  Google Scholar 

  33. P. D. Naselsky, P. R. Christensen, P. Coles, O. Verkhodanov, D. Novikov, and J. Kim, “Understanding the WMAP cold spot mystery,” Astrophys. Bull. 65, 101 (2010).

    Article  ADS  Google Scholar 

  34. C. G. T. Haslam, C. J. Salter, H. Stoffel, and W. E. Wilson, “A 408 MHz all-sky continuum survey. II The atlas of contour maps,” Astron. Astrophys. 47, 1 (1982).

    ADS  Google Scholar 

  35. M. Hansen, W. Zhao, A. M. Frejsel, P. D. Naselsky, J. Kim, and O. V. Verkhodanov, “Faraday rotation as a diagnostic of galactic foreground contamination of cosmic microwave background maps,” MNRAS 426, 57 (2012) (arXiv:1202.1711).

    Article  ADS  Google Scholar 

  36. F. K. Hansen, A. J. Banday, and K. M. Gorski, “Testing the cosmological principle of isotropy: local powerspectrum estimates of the WMAP data,” MNRAS 354, 641 (2004).

    Article  ADS  Google Scholar 

  37. C.-G. Park, “Non-Gaussian signatures in the temperature fluctuation observed by the Wilkinson microwave anisotropy probe,” MNRAS 349, 313 (2004).

    Article  ADS  Google Scholar 

  38. D. J. Schwarz, G. D. Starkman, D. Huterer, and C. J. Copi, “Is the low-l microwave background cosmic” Phys. Rev. Lett. 93, 221301 (2004).

    Article  ADS  Google Scholar 

  39. O. V. Verkhodanov, M. L. Khabibullina, and E. K. Majorova, “Tessellated mapping of cosmic background radiation correlations,” Astrophys. Bull. 64, 263 (2009) (arXiv:0912.3073).

    Article  ADS  Google Scholar 

  40. O. V. Verkhodanov and M. L. Khabibullina, “Dominant multipoles in WMAP5 mosaic data correlation maps,” Astrophys. Bull. 65, 390 (2010).

    Article  ADS  Google Scholar 

  41. H. K. Eriksen, D. I. Novikov, P. B. Lilje, A. J. Banday, and K. M. Górski, “Testing for non-Gaussianity in the Wilkinson microwave anisotropy probe data: Minkowski functionals and the length of the skeleton,” Astrophys. J. 612, 64 (2004).

    Article  ADS  Google Scholar 

  42. H. K. Eriksen, A. J. Banday, K. M. Górski, and P. B. Lilje, “The N-point correlation functions of the first-year Wilkinson microwave anisotropy probe sky maps,” Astrophys. J. 622, 58 (2005).

    Article  ADS  Google Scholar 

  43. C. Räth, P. Schuecker, and A. J. Banday, “A scaling index analysis of the Wilkinson microwave anisotropy probe three-year data: signatures of non-Gaussianities and asymmetries in the cosmic microwave background,” MNRAS 380, 466 (2007).

    Article  ADS  Google Scholar 

  44. O. V. Verkhodanov, “Comparison of Low-Harmonics Spectra and Maps According to the WMAP and Planck Space Missions,” Astrophys. Bull. 69, 330 (2014).

    Article  ADS  Google Scholar 

  45. O. V. Verkhodanov, “Searching for non-Gaussianity in the observational cosmic microwave background data,” Phys. Usp. 55, 1098 (2012).

    Article  ADS  Google Scholar 

  46. P. A. R. Ade, R. W. Aikin, and D. Barkats (BICEP2 Collaboration), “BI-CEP2 I: detection of B-mode polarization at degree angular scales,” arXiv:1403.3985.

  47. H. Liu, P. Mertsch, and S. Sarkar, “Fingerprints of galactic loop I on the cosmic microwave background,” arXiv:1404.1899.

  48. P. A. R. Ade, N. Aghanim, and C. Armitage-Caplan (Planck Collaboration), “Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts,” Accepted in Astron. Astrophys. (2014) (arXiv:1303.5080).

    Google Scholar 

  49. P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, et al. (Planck Collaboration), “Planck 2013 results. XVI. Cosmological parameters,” Accepted in Astron. Astrophys. (2014) (arXiv:1303.5076).

    Google Scholar 

  50. D. Spergel, R. Flauger, and R. Hlozek, “Planck data reconsidered,” arXiv:1312.3313S.

  51. A. G. Doroshkevich, O. V. Verkhodanov, P. D. Naselsky, J. Kim, D. I. Novikov, V. I. Turchaninov, I. D. Novikov, L. Chiang, and M. Hansen, “The Gauss-Legendre sky pixelization for the CMB polarization (GLESP-pol). Errors due to Pixelization of the CMB Sky,” Intern. J. Mod. Phys. D 20, 1053 (2011) (arXiv:0904.2517).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Verkhodanov.

Additional information

Talk at the International workshop on Prospects of Particle Physics: Neutrino Physics and Astrophysics, Valdai, Russia, January 27–February 1, 2014

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verkhodanov, O.V. Series anomalies of low multipoles of WMAP and Planck missions: What are they?. Phys. Part. Nuclei 46, 237–247 (2015). https://doi.org/10.1134/S1063779615020197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615020197

Keywords

Navigation