Skip to main content
Log in

Dinuclear systems in complete fusion reactions

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Formation and evolution of dinuclear systems in reactions of complete fusion are considered. Based on the dinuclear system concept, the process of compound nucleus formation is studied. Arguments confirming the validity of this concept are given. The main problems of describing the complete fusion in adiabatic approximation are listed. Calculations of evaporation residue cross sections in complete fusion reactions leading to formation of superheavy nuclei are shown. Isotopic trends of the cross sections of heavy nuclei formation in complete fusion reactions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Volkov, “Deep inelastic transfer reactions-The new type of reactions between complex nuclei,” Phys. Rep. 44, 93–157 (1978).

    ADS  Google Scholar 

  2. V. V. Volkov, Nuclear Reactions of Deep Inelastic Transfers (Energoatomizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  3. V. V. Volkov, “Production of nuclei far from stability,” in Treatise on Heavy-Ion Science, Ed. by D.A. Bromley (Plenum Press, New York, 1989), Vol. 8, pp. 101–203.

    Google Scholar 

  4. W. U. Schröder and J. R. Huizenga, “Damped nuclear reactions,” in Treatise on Heavy-Ion Science, Ed. by D.A. Bromley (Plenum Press, New York, 1984), Vol. 2, p. 115.

    Google Scholar 

  5. S. Heinz, V. Comas, F. P. Hessberger, S. Hofmann, D. Ackermann, H. G. Burkhard, Z. Gan, J. Heredia, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, J. Maurer, V. Nishio, and B. Sulignano, “Di-nuclear systems studied with the velocity filter SHIP,” Eur. Phys. J. A 38, 227–232 (2008); S. Heinz, V. Comas, S. Hofmann, D. Ackermann, J. Heredia, F. P. Hessberger, J. Khuyagbaatar, B. Kindler, B. Lommel, and R. Mann, “Investigation of di-nuclear systems as entrance channel to fusion,” Eur. Phys. J. A 43, 181–184 (2010).

    ADS  Google Scholar 

  6. V. Comas, S. Heinz, S. Hofmann, D. Ackermann, J. Heredia, F. P. Hessberger, J. Khuyagbaatar, B. Kindler, B. Lommel, and R. Mann, “Observation of rotating nuclear molecules and determination of their life-times,” Eur. Phys. J. A 48, 180 (2012); V. Comas, S. Heinz, S. Hofmann, D. Ackermann, J. Heredia, F. P. Hessberger, J. Khuyagbaatar, B. Kindler, B. Lommel, and R. Mann, “Study of multinucleon transfer reactions in 58, 64Ni + 207Pb collisions at the velocity filter SHIP,” Eur. Phys. J. A 49, 112 (2013).

    ADS  Google Scholar 

  7. G. G. Adamyan, N. V. Antonenko, R. V. Jolos, and A. K. Nasirov, “Influence of shell effects on dynamics of deep inelastic heavy-ion collisions,” Fiz. Elem. Chastits At. Yadra 25, 1379–1443 (1994).

    Google Scholar 

  8. V. V. Volkov, “Deep inelastic transfers and complete fusion of complex nuclei. The new approach to the process of nuclear fusion,” Izv. Akad. Nauk SSSR, Ser. Fiz. 50, 1879 (1986).

    Google Scholar 

  9. N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. P. Permjakov, and V. V. Volkov, “Competition between complete fusion and quasifission in reactions between massive nuclei. The Fusion Barrier,” Phys. Lett. B 319, 425 (1993); N. V. Antonenko, E. A. Cherepanov, A. K. Nasirov, V. P. Permjakov, and V. V. Volkov, “Compound nucleus formation in reactions between massive nuclei: Fusion barrier,” Phys. Rev. C 51, 2635 (1995).

    ADS  Google Scholar 

  10. N. V. Antonenko, V. V. Volkov, A. K. Nasirov, and E. A. Cherepanov, Izv. Akad. Nauk, Ser. Fiz. 60, 106–113 (1996).

    Google Scholar 

  11. V. V. Volkov, “A process of complete fusion of atomic nuclei. Nuclear fusion in the context of the di-nuclear system concept,” Fiz. Elem. Chastits At. Yadra 35, 797–857 (2004).

    Google Scholar 

  12. A. S. Zubov, G. G. Adamyan, and N. V. Antonenko, “Application of statistical methods for analysis of heavy-ion reactions in the framework of a dinuclear system model,” Phys. Part. Nucl. 40, 847 (2009).

    Google Scholar 

  13. V. V. Sargsyan, Z. Kanokov, G. G. Adamyan, and N. V. Antonenko, “Quantum statistical effects in nuclear reactions, fission, and open quantum systems,” Phys. Part. Nucl. 41, 175 (2010).

    Google Scholar 

  14. Sh. A. Kalandarov, G. G. Adamyan, and N. V. Antonenko, “Emission of heavy clusters in nuclear reactions at low collision energies,” Phys. Part. Nucl. 43, 825 (2012).

    Google Scholar 

  15. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Clustering effects within the dinuclear model,” in Lecture Notes in Physics, Ed. by C. Beck (Springer, Berlin-Heidelberg, 2012), Vol. 848, pp. 165–227.

    Google Scholar 

  16. E. A. Cherepanov, Preprint E7-99-27 (JINR, Dubna, 1999).

  17. G. G. Giardina, S. Hofmann, A. I. Muminov, and A. K. Nasirov, “Effect of the entrance channel on the synthesis of superheavy elements,” Eur. Phys. J. A 8, 205 (2000); G. G. Giardina, F. Hanappe, A. I. Muminov, A. K. Nasirov, and L. Stuttgé, “Capture and fusion dynamics in heavy-ion collisions,” Nucl. Phys. A 671, 165–188 (2000); A. Nasirov, A. Fukushima, Yu. Toyoshima, Yo. Aritomo, A. Muminov, Sh. Kalandarov, and R. Utamuratov, “The role of orientation of nucleus symmetry axis in fusion dynamics,” Nucl. Phys. A 759, 342–369 (2005); A. K. Nasirov, G. Giardina, G. Mandaglio, M. Manganaro, F. Hanappe, S. Heinz, S. Hofmann, A. I. Muminov, and W. Scheid, “Quasifission and fusion-fission in reactions with massive nuclei: comparison of reactions leading to the Z = 120 element,” Phys. Rev. C 79, 024606 (2009); A. K. Nasirov, G. Mandaglio, G. Giardina, A. Sobiczewski, and A. I. Muminov, “Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z = 120,” Phys. Rev. C 84, 044612 (2011); G. G. Mandaglio, G. Giardina, A. K. Nasirov, and A. Sobiczewski, “Investigation of the 48Ca + 249–252Cf reactions synthesizing isotopes of the superheavy element 118,” Phys. Rev. C 86, 064607 (2012); H. Q. Zhang, C. L. Zhang, C. J. Lin, Z. H. Liu, F. Yang, A. K. Nasirov, G. Mandaglio, M. Manganaro, and G. Giardina, “Competition between fusion-fission and quasifission processes in the 32S + 184W reaction,” Phys. Rev. C: 81, 034611 (2010).

    ADS  Google Scholar 

  18. Z. Q. Feng, G. M. Jin, J. Q. Li, and W. Scheid, “Formation of superheavy nuclei in cold fusion reactions,” Phys. Rev. C 76, 044606 (2007); M. Huang, Z. Gan, X. Zhou, J.Q. Li, and W. Scheid, “Competing fusion and quasifission reaction mechanisms in the production of superheavy nuclei,” Phys. Rev. C 82, 044614 (2010).

    ADS  Google Scholar 

  19. E. G. Zhao, N. Wang, Z. Q. Feng, J. Q. Li, S. G. Zhou, and W. Scheid, “The isotopic and nuclear orientation effects on the production of super-heavy elements,” Int. J. Mod. Phys. E 17, 1937 (2008); N. Wang, E. G. Zhao, W. Scheid, and S. G. Zhou, “Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets,” Phys. Rev. C 85, 041601 (2012); N. Wang, E. G. Zhao, W. Scheid, “Synthesis of superheavy nuclei with Z = 118 in hot fusion reactions,” Phys. Rev. C 89, 037601 (2014).

    ADS  Google Scholar 

  20. G. N. Flerov, “Synthesis and search for heavy transuranium elements,” Sov. At. Energy 28, 390 (1970).

    Google Scholar 

  21. Yu. Ts. Oganessian, “Fusion and Fission Induced by Heavy Ions,” in Lecture Notes in Physics, Ed. by C. Beck (Springer, Berlin, 1974), Vol. 33, p. 221; Yu. Ts. Oganessian, A.S. Iljinov, A. G. Demin, and S. P. Tretyakova, “Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z > 100,” Nucl. Phys. A 239, 353–364 (1975).

    Google Scholar 

  22. Yu. Ts. Oganessian and Yu. A. Lazarev, “Heavy ions and nuclear fission,” in Treatise on Heavy-Ion Science, Ed. by D. A. Bromley (Plenum Press, New York, 1985), Vol. 4, p. 3.

    Google Scholar 

  23. G. N. Flerov and G. M. Ter-Akopian, “Superheavy elements,” in Treatise on Heavy-Ion Science, Ed. by D. A. Bromley (Plenum Press, New York, 1985), Vol. 4, p. 231.

    Google Scholar 

  24. G. T. Seaborg and W. D. Loveland, “Transuranium nuclei,” in Treatise on Heavy-Ion Science, Ed. by D.A. Bromley (Plenum Press, New York, 1985), Vol. 4, p. 253.

    Google Scholar 

  25. P. Armbruster, “On the production of heavy elements by cold fusion: The elements 106 to 109,” Ann. Rev. Nucl. Part. Sci. 35, 135–194 (1985); P. Armbruster, “On the production of superheavy elements,” Ann. Rev. Nucl. Part. Sci. 50, 411–479 (2000); P. Armbruster, “Nuclear structure in cold rearrangement processes in fission and fusion,” Rep. Prog. Phys. 62, 465–525 (1999); P. Armbruster, “On the production of superheavy elements,” C. R. Physique 4, 571–594 (2003).

    MathSciNet  ADS  Google Scholar 

  26. G. Münzenberg, “Recent advances in the discovery of transuranium elements,” Rep. Prog. Phys. 51, 57–104 (1988).

    ADS  Google Scholar 

  27. K.-H. Schmidt and W. Morawek, “The conditions for the synthesis of heavy nuclei,” Rep. Prog. Phys. 54, 949–1003 (1991).

    ADS  Google Scholar 

  28. Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, V. K. Utyonkov, F. Sh. Abdullin, G. V. Buklanov, B. N. Gikal, S. Iliev, A. N. Mezentsev, A. N. Polyakov, I. M. Sedykh, I. V. Shirokovsky, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. E. Zhuchko, R. W. Lougheed, K. J. Moody, J. F. Wild, E. K. Hulet, and J. H. McQuaid, “Discovery of enhanced nuclear stability near the deformed shells N = 162 and Z = 108,” Phys. Rev. Lett. 73, 624 (1994); Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, Yu. S. Tsyganov, V. K. Utyonkov, F. Sh. Abdullin, S. Iliev, A. N. Polyakov, J. Rigol, I. V. Shirokovsky, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, B. N. Gikal, V. B. Kutner, A. N. Mezentsev, I. M. Sedykh, D. V. Vakatov, R.W. Lougheed, J. F. Wild, K. J. Moody, and E. K. Hulet, “New nuclide 267108 produced by the 238U + 34S reaction,” Phys. Rev. Lett. 75, 1903 (1995); Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, V. K. Utyonkov, F. Sh. Abdullin, A. N. Polyakov, J. Rigol, I. V. Shirokovsky, Yu. S. Tsyganov, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, B. N. Gikal, V. B. Kutner, A. N. Mezentsev, K. Subotic, J. F. Wild, R. W. Lougheed, and K. J. Moody, “α decay of 273110: Shell closure at N = 162,” Phys. Rev. C 54, 620 (1996).

    ADS  Google Scholar 

  29. S. Hofmann, “New elements-approaching,” Rep. Prog. Phys. 61, 639–690 (1998).

    ADS  Google Scholar 

  30. Yu. Ts. Oganessian, Heavy Elements and Related New Phenomena (World Scientific, Singapore, 1999).

    Google Scholar 

  31. Yu. Ts. Oganessian, A. V. Yeremin, G. G. Gulbekian, S. L. Bogomolov, V. I. Chepigin, B. N. Gikal, V. A. Gorshkov, M. G. Itkis, A. P. Kabachenko, V. B. Kutner, A. Yu. Lavrentev, O. N. Malyshev, A. G. Popeko, J. Rohac, R. N. Sagaidak, S. Hofmann, G. Münzenberg, M. Veselsky, S. Saro, N. Iwasa, and K. Morita, “Search for new isotopes of element 112 by irradiation of 238U with 48Ca,” Eur. Phys. J. A 5, 63 (1999); Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, K. Subotic, M. G. Itkis, K. J. Moody, J. F. Wild, N. J. Stoyer, M. A. Stoyer, and R. W. Lougheed, “Synthesis of superheavy nuclei in the 48Ca + 244Pu reaction,” Phys. Rev. Lett. 83, 3154 (1999); Yu. Ts. Oganessian, A. V. Yeremin, A. G. Popeko, S. L. Bogomolov, G. V. Buklanov, M. L. Chelnokov, V. I. Chepigin, B. N. Gikal, V. A. Gorshkov, G. G. Gulbekian, M. G. Itkis, A. P. Kabachenko, A. Yu. Lavrentev, O.N. Malyshev, J. Rohac, R. N. Sagaidak, S. Hofmann, S. Saro, G. Giardina, and K. Morita, “Synthesis of nuclei of the superheavy element 114 in reactions induced by 48Ca,” Nature 400, 242–245 (1999).

    ADS  Google Scholar 

  32. S. Hofmann and G. Münzenberg, “The discovery of the heaviest elements,” Rev. Mod. Phys. 72, 733 (2000).

    ADS  Google Scholar 

  33. S. Hofmann, F. P. Hessberger, D. Ackermann, S. Antalic, P. Cagarda, S. Cwiok, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Münzenberg, A.G. Popeko, S. Saro, H. J. Schott, and A. V. Yeremin, “The new isotope 270110 and its decay products 266Hs and 262Sg,” Eur. Phys. J. A 10, 5–10 (2001); S. Hofmann, “Status and prospects of synthesizing superheavy elements,” Eur. Phys. J. A 15, 195–200 (2002).

    ADS  Google Scholar 

  34. S. Hofmann, F. P. Hessberger, D. Ackermann, G. Münzenberg, S. Antalic, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A. G. Popeko, S. Reshitko, S. Saro, J. Uusitalo, and A. V. Yeremin, “New results on elements 111 and 112,” Eur. Phys. J. A 14, 147–158 (2002).

    ADS  Google Scholar 

  35. J. Peter, Preprint No. 01-13, LPCC (Caen, 2001); C. Stodel, N. Alamanos, N. Amar, J. C. Angélique, R. Anne, G. Aguer, J. M. Casandjian, R. Dayras, A. Drouart, J.M. Fontbonne, A. Gillibert, S. Grévy, D. Guerreau, F. Hannape, R. Hue, A. S. Lalleman, N. Lecesne, T. Legou, M. Lewitowicz, R. Lichtenthäller, E. Liénard, L. Maunoury, W. Mittig, N. Orr, J. Peter, E. Plagnol, G. Politi, M. G. Saint-Laurent, J. C. Steckmeyer, J. Tillier, R. de Tourreil, A. C. C. Villari, J. P. Wieleczko, and A. Wieloch, “Production of superheavy elements at GANIL,” AIP Conf. Proc. 561, 344 (2001); T. N. Ginter, K. E. Gregorich, W. Loveland, D. M. Lee, U. W. Kirbach, R. Sudowe, C. M. Folden III, J. B. Patin, N. Seward, P. A. Wilk, P. M. Zielinski, K. Aleklett, R. Eichler, H. Nitsche, and D. C. Hoffman, “Confirmation of production of element 110 by the 208Pb(64Ni, n) reaction,” Phys. Rev. C 67, 064609 (2003).

  36. K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, H. Xu, T. Yamaguchi, A. Yoneda, A. Yoshida, and Y. Zhao, “Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n)278113,” J. Phys. Soc. Jpn. 73, 2593 (2004); K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, F. Tokanai, T. Yamaguchi, A. Yoneda, and A. Yoshida, “Experiment on synthesis of an isotope 277112 by 208Pb + 70Zn reaction,” J. Phys. Soc. Jpn. 76, 043201 (2007); K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kikunaga, H. Kudo, T. Ohnishi, A. Ozawa, N. Sato, T. Suda, K. Sueki, F. Tokanai, T. Yamaguchi, A. Yoneda, and A. Yoshida, “Observation of second decay chain from 278113,” J. Phys. Soc. Jpn. 76, 045001 (2007).

    ADS  Google Scholar 

  37. Yu. Ts. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Yu. V. Lobanov, M. G. Itkis, A. N. Polyakov, Yu. S. Tsyganov, A. N. Mezentsev, A. V. Yeremin, A. A. Voinov, E. A. Sokol, G. G. Gulbekian, S. L. Bogomolov, S. Iliev, V. G. Subbotin, A. M. Sukhov, G. V. Buklanov, S. V. Shishkin, V. I. Chepygin, G. K. Vostokin, N. V. Aksenov, M. Hussonnois, K. Subotic, V. I. Zagrebaev, K. J. Moody, J. B. Patin, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A. Wilk, R. W. Lougheed, H. W. Gäggeler, D. Schumann, H. Bruchertseifer, and R. Eichler, “Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca,” Phys. Rev. C 72, 034611 (2005); Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, S.L.Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, G. K. Vostokin, M. G. Itkis, K. J. Moody, J. B. Patin, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, P. A. Wilk, J. M. Kenneally, J. H. Landrum, J. F. Wild, and R. W. Lougheed, “Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions,” Phys. Rev. C 74, 044602 (2006).

    ADS  Google Scholar 

  38. Yu. Ts. Oganessian, “Heavist nuclei from 48Ca-induced reactions,” J. Phys. G 34, R165 (2007).

    ADS  Google Scholar 

  39. S. Hofmann, D. Ackermann, S. Antalic, H. G. Burkhard, V. F. Comas, R. Dressler, Z. Gan, S. Heinz, J. A. Heredia, F. P. Hessberger, J. Khuyagbaatar, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, G. Münzenberg, K. Nishio, A. G. Popeko, S. Saro, H. J. Schott, B. Streicher, B. Sulignano, J. Uusitalo, M. Venhart, and A. V. Yeremin, “The reaction 48Ca + 238U → 286112 studied at the GSI-SHIP,” Eur. Phys. J. A 32, 251 (2007).

    ADS  Google Scholar 

  40. A. V. Yeremin, “Regularities of formation and survival probability of compound nuclei in the region of Z ≥ 82: Study of complete-fusion reactions with heavy ions using the kinematic separator VASSILISSA,” Phys. Part. Nucl. 38, 492 (2007).

    Google Scholar 

  41. Yu. Ts. Oganessian, S. N. Dmitriev, A. V. Yeremin, N.V. Aksenov, G. A. Bozhikov, V. I. Chepigin, M. L. Chelnokov, V. Ya. Lebedev, O. N. Malyshev, O. V. Petrushkin, S. V. Shishkin, A. I. Svirikhin, E. E. Tereshatov, and G. K. Vostokin, “Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe,” Phys. Rev. C 79, 024608 (2009).

    ADS  Google Scholar 

  42. S. Hofmann, D. Ackermann, S. Antalic, V. F. Comas, S. Heinz, J. A. Heredia, F. P. Hessberger, J. Khuyagbaatar, V. Kindler, I. Kojouharov, M. Leino, B. Lommel, R. Mann, K. Nishio, A. G. Popeko, S. Saro, J. Uusitalo, M. Venhart, and A. V. Yeremin, “Probing shell effects at Z = 120 and N = 184,” in GSI Scientific Report 2008 (Darmstadt, 2009), p. 131.

    Google Scholar 

  43. S. Hofmann, “Superheavy elements,” in Lecture Notes in Physics, Ed. by C. Beck (Springer, Berlin-Heidelberg, 2009), Vol. 764. p. 203; S. Hofmann, “Synthesis of superheavy elements by cold fusion,” Radiochim. Acta 99, 405 (2011).

    Google Scholar 

  44. L. Stavsetra, K. E. Gregorich, J. Dvorak, P. A. Ellison, I. Dragojevic, M. A. Garcia, H. Nitsche, “Independent verification of element 114 production in the 48Ca + 242Pu reaction,” Phys. Rev. Lett. 103, 132502 (2009).

    ADS  Google Scholar 

  45. Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, and P. A. Wilk, “Synthesis of a new element with atomic number Z = 117,” Phys. Rev. Lett. 104, 142502 (2010).

    ADS  Google Scholar 

  46. Ch. Düllmann, M. Schädel, A. Yakushev, A. Türler, K. Eberhardt, J. V. Kratz, D. Ackermann, L.-L. Andersson, M. Block, W. Brüchle, J. Dvorak, H. G. Essel, P. A. Ellison, J. Even, J. M. Gates, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R.-D. Herzberg, F. P. Hessberger, D. Hild, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J. P. Omtvedt, E. Parr, D. Rudolph, J. Runke, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thörle-Pospiech, J. Uusitalo, M. Wegrzecki, and N. Wiehl, “Production and decay of element 114: High cross sections and the new nucleus 277Hs,” Phys. Rev. Lett. 104, 252701 (2010).

    ADS  Google Scholar 

  47. P. A. Ellison, K. E. Gregorich, J. S. Berryman, D. L. Bleuel, R. M. Clark, I. Dragojevic, J. Dvorak, P. Fallon, C. Fineman-Sotomayor, J. M. Gates, O. R. Gothe, I. Y. Lee, W. D. Loveland, J. P. McLaughlin, S. Paschalis, M. Petri, J. Qian, L. Stavsetra, M. Wiedeking, and H. Nitsche, “New superheavy element isotopes: 242Pu(48Ca, 5n)285114,” Phys. Rev. Lett. 105, 182701 (2010).

    ADS  Google Scholar 

  48. S. Hofmann, S. Heinz, D. Ackermann, S. Antalic, W. Barth, H. G. Burkhard, V. F. Comas, L. Dahl, K. Eberhardt, J. Gostic, R. Grzywacz, R. A. Henderson, J. A. Heredia, F. P. Hessberger, J. M. Kenneally, B. Kindler, I. Kojouharov, R. Lang, M. Leino, B. Lommel, R. Mann, J. Maurer, K. Miernik, D. Miller, K. J. Moody, G. Münzenberg, S. L. Nelson, K. Nishio, A. G. Popeko, J. B. Roberto, J. Runke, K. P. Rykaczewski, S. Saro, D. A. Shaughnessy, M. A. Stoyer, P. Thörle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, P. A. Wilk, and A. V. Yeremin, “Attempts for the synthesis of new elements at SHIP,” in GSI Scientific Report 2011 (Darmstadt, 2012), p. 205.

    Google Scholar 

  49. J. M. Gates, Ch. E. Düllmann, M. Schädel, A. Yakushev, A. Türler, K. Eberhardt, J. V. Kratz, D. Ackermann, L.-L. Andersson, M. Block, W. Brüchle, J. Dvorak, H. G. Essel, P. A. Ellison, J. Even, U. Forsberg, J. Gellanki, A. Gorshkov, R. Graeger, K. E. Gregorich, W. Hartmann, R.-D. Herzberg, F. P. Hessberger, D. Hild, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J. P. Omtvedt, E. Parr, D. Rudolph, J. Runke, H. Schaffner, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thörle Pospiech, J. Uusitalo, M. Wegrzecki, and N. Wiehl, “First superheavy element experiments at the GSI recoil separator TASCA: The production and decay of element 114 in the 244Pu(48Ca, 3–4n) reaction,” Phys. Rev. C 83, 054618 (2011).

    ADS  Google Scholar 

  50. S. Hofmann, S. Heinz, R. Mann, J. Maurer, J. Khuyagbaatar, D. Ackermann, S. Antalic, W. Barth, M. Block, H. G. Burkhard, V. F. Comas, L. Dahl, K. Eberhardt, J. Gostic, R. A. Henderson, J. A. Heredia, F. P. Hessberger, J. M. Kenneally, B. Kindler, I. Kojouharov, J. V. Kratz, R. Lang, M. Leino, B. Lommel, K. J. Moody, G. Münzenberg, S. L. Nelson, K. Nishio, A. G. Popeko, J. Runke, S. Saro, D. A. Shaughnessy, M. A. Stoyer, P. Thörle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, P. A. Wilk, and A. V. Yeremin, “The reaction 48Ca + 248Cm → 296116* studied at the GSI-SHIP,” Eur. Phys. J. A 48, 62 (2012).

    ADS  Google Scholar 

  51. K. Morita, K. Morimoto, D. Kaji, H. Haba, K. Ozeki, Y. Kudou, T. Sumita, Y. Wakabayashi, A. Yoneda, K. Tanaka, S. Yamaki, R. Saka, T. Akiyama, S. Goto, H. Hasebe, M. Huang, T. Huang, E. Ideguchi, Y. Kasamatsu, K. Katori, Y. Kariya, H. Kikunaga, H. Koura, H. Kudo, A. Mashiko, K. Mayama, S. Mitsuoka, T. Moriya, M. Murakami, H. Murayama, S. Namai, A. Ozawa, N. Sato, K. Sueki, M. Takeyama, F. Tokanai, T. Yamaguchi, and A. Yoshida, “New result in the production and decay of an isotope, 278113, of the 113th element,” J. Phys. Soc. Jpn. 81, 103201 (2012).

    ADS  Google Scholar 

  52. Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F.D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, R. Taylor, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, and P. A. Wilk, “Eleven new heaviest isotopes of elements Z =105 to Z =117 identified among the products of 249Bk + 48Ca reactions,” Phys. Rev. C 83, 054315 (2011); Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, R. A. Henderson, M.G. Itkis, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, “Investigation of the 243Am + 48Ca reaction products previously observed in the experiments on elements 113, 115, and 117,” Phys. Rev. C 87, 014302 (2013); Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, “Experimental studies of the 249Bk + 48Ca reaction including decay properties and excitation function for isotopes of element 117, and discovery of the new isotope 277Mt,” Phys. Rev. C 87, 054621 (2013); Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, J. M. Gostic, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. J. Moody, A.N. Polyakov, A. V. Ramayya, J. B. Roberto, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, “New insights into the 243Am + 48Ca reaction products previously observed in the experiments on elements 113, 115, and 117,” Phys. Rev. Lett. 108, 022502 (2012); Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R. A. Boll, S. N. Dmitriev, J. Ezold, K. Felker, J. M. Gostic, R. K. Grzywacz, J. H. Hamilton, R. A. Henderson, M. G. Itkis, K. Miernik, D. Miller, K. J. Moody, A. N. Polyakov, A. V. Ramayya, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. V. Shumeiko, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, and G. K. Vostokin, “Production and decay of the heaviest nuclei 293, 294117 and 294118,” Phys. Rev. Lett. 109, 162501 (2012).

    ADS  Google Scholar 

  53. Yu. Ts. Oganessian, V. K. Utyonkov, F. Sh. Abdullin, S. N. Dmitriev, R. Graeger, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, M. A. Ryabinin, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, N. J. Stoyer, V. G. Subbotin, K. Subotic, A. M. Sukhov, Yu. S. Tsyganov, A. Türler, A. A. Voinov, G. K. Vostokin, P. A. Wilk, and A. Yakushev, “Synthesis and study of decay properties of the doubly magic nucleus 270Hs in 226Ra + 48Ca reaction,” Phys. Rev. C 87, 034605 (2013).

    ADS  Google Scholar 

  54. A. B. Yakushev, I. Zvara, Yu. Ts. Oganessian, A. V. Belozerov, S. N. Dmitriev, B. Eichler, S. Hübener, E. A. Sokol, A. Türler, A. V. Yeremin, G. V. Buklanov, M. L. Chelnokov, V. I. Chepigin, V. A. Gorshkov, A. V. Gulyaev, V. Ya. Lebedev, O. N. Malyshev, A. G. Popeko, S. Soverna, Z. Szeglowski, S. N. Timokhin, S. P. Tretyakova, V. M. Vasko, and M. G. Itkis, “Chemical identification and properties of element 112,” Radiochim. Acta 91, 433 (2003); R. Eichler, W. Brüchle, R. Buda, S. Bürger, R. Dressler, Ch. E. Düllmann, J. Dvorak, K. Eberhardt, B. Eichler, C. M. Folden III, H. W. Gäggeler, K. E. Gregorich, F. Haenssler, D. C. Hoffman, H. Hummrich, E. Jäger, J. V. Kratz, B. Kuczewski, D. Liebe, D. Nayak, H. Nitsche, D. Piguet, Z. Qin, U. Rieth, M. Schädel, B. Schausten, E. Schimpf, A. Semchenkov, S. Soverna, R. Sudowe, N. Trautmann, P. Thörle, A. Türler, B. Wierczinski, N. Wiehl, P. A. Wilk, G. Wirth, A. B. Yakushev, and A. von Zweidorf, “Attempts to chemically investigate element 112,” Radiochim. Acta 94, 181 (2006); R. Eichler, N. V. Aksenov, A. V. Belozerov, G. A. Bozhikov, V. I. Chepigin, R. Dressler, S. N. Dmitriev, H. W. Gäggeler, V. A. Gorshkov, F. Haenssler, M. G. Itkis, V. Ya. Lebedev, A. Laube, O. N. Malyshev, Yu. Ts. Oganessian, O. V. Petruschkin, D. Piguet, P. Rasmussen, S. V. Shishkin, A. V. Shutov, A. I. Svirikhin, E. E. Tereshatov, G. K. Vostokin, M. Wegrzecki, and A. V. Yeremin, “Confirmation of the decay of 283112 and first indication for Hg-like behavior of element 112,” Nucl. Phys. A 787, 373 (2007); R. Eichler, N. V. Aksenov, A. V. Belozerov, G. A. Bozhikov, V. I. Chepigin, R. Dressler, S. N. Dmitriev, H. W. Gäggeler, V. A. Gorshkov, F. Haenssler, M. G. Itkis, V. Ya. Lebedev, A. Laube, O. N. Malyshev, Yu. Ts. Oganessian, O. V. Petruschkin, D. Piguet, P. Rasmussen, S. V. Shishkin, A. V. Shutov, A. I. Svirikhin, E. E. Tereshatov, G. K. Vostokin, M. Wegrzecki, and A. V. Yeremin, “Chemical characterization of element 112,” Nature 447, 72 (2007).

    Google Scholar 

  55. C. M. Folden III, K. E. Gregorich, Ch. E. Düllmann, H. Mahmud, G. K. Pang, J. M. Schwantes, R. Sudowe, P. M. Zielinski, H. Nitsche, and D. C. Hoffman, “Development of an odd-Z-projectile reaction for heavy element synthesis: 208Pb(64Ni, n)271Ds and 208Pb(65Cu, n)272111,” Phys. Rev. Lett. 93, 212702 (2004); C. M. Folden III, S. L. Nelson, Ch. E. Düllmann, J. M. Schwantes, R. Sudowe, P. M. Zielinski, K. E. Gregorich, H. Nitsche, and D. C. Hoffman, “Excitation function for the production of 262Bh (Z = 107) in the odd-Z-projectile reaction 208Pb(55Mn, n),” Phys. Rev. C 73, 014611 (2006); C. M. Folden III, I. Dragojevic, Ch. E. Düllmann, R. Eichler, M. A. Garcia, J. M. Gates, S. L. Nelson, R. Sudowe, K. E. Gregorich, D. C. Hoffman, and H. Nitsche, “Measurement of the 208Pb(52Cr, n)259Sg,” Phys. Rev. C 79, 027602 (2009); K. E. Gregorich, J. M. Gates, Ch. E. Düllmann, R. Sudowe, S. L. Nelson, M. A. Garcia, I. Dragojevic, C. M. Folden III, S. H. Neumann, D. C. Hoffman, and H. Nitsche, “New isotope 264Sg and decay properties of 262–264Sg,” Phys. Rev. C 74. 044611 (2006); J. M. Gates, S. L. Nelson, K. E. Gregorich, I. Dragojevic, Ch. E. Düllmann, P. A. Ellison, C. M. Folden III, M. A. Garcia, L. Stavsetra, R. Sudowe, D. C. Hoffman, and H. Nitsche, “Comparison of reactions for the production of 258, 257Db: 208Pb(51V, xn) and 209Bi(50Ti, xn),” Phys. Rev. C 78, 034604 (2008); Ch. E. Düllmann and A. Türler, “248Cm(22Ne, xn)270−xSg reaction and the decay properties of 265Sg reexamined,” Phys. Rev. C 77, 064320 (2008); Erratum: “248Cm(22Ne, xn)270−xSg reaction and the decay properties of 265Sg reexamined,” Phys. Rev. C 77, 029901 (2008); J. Dvorak, W. Brüchle, M. Chelnokov, Ch. E.Düllmann, Z. Dvorakova, K. Eberhardt, E. Jäger, R. Krücken, A. Kuznetsov, Y. Nagame, F. Nebel, K. Nishio, R. Perego, Z. Qin, M. Schädel, B. Schausten, E. Schimpf, R. Schuber, A. Semchenkov, P. Thörle, A. Türler, M. Wegrzecki, B. Wierczinski, A. Yakushev, and A. Yeremin, “Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs,” Phys. Rev. Lett. 100, 132503 (2008); J. Dvorak, W. Brüchle, Ch. E. Düllmann, Z. Dvorakova, K. Eberhardt, R. Eichler, E. Jäger, Y. Nagame, Z. Qin, Schädel, B. Schausten, E. Schimpf, R. Schuber, A. Semchenkov, P. Thörle, A. Türler, M. Wegrzecki, and A. Yakushev, “Cross section limits for the 248Cm(25Mg, 4n–5n)268, 269Hs reactions,” Phys. Rev. C 79, 037602 (2009); I. Dragojevi K. E. Gregorich, Ch. E. Düllmann, J. Dvorak, P. A. Ellison, J. M. Gates, S. L. Nelson, L. Stavsetra, and H. Nitsche “New isotope 263Hs,” Phys. Rev. C 79, 011602 (2009); S.L. Nelson, K. E. Gregorich, c-, I. Dragojevi J. Dvorak, P. A. Ellison, M. A. Garcia, J. M. Gates, L. Stavsetra, M. N. Ali, and H. Nitsche “Comparison of complementary reactions in the production of Mt,” Phys. Rev. C 79, 027605 (2009); R. Graeger, D. Ackermann, M. Chelnokov, V. Chepigin, Ch. E. Düllmann, J. Dvorak, J. Even, A. Gorshkov, F. P. Hessberger, D. Hild, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J. V. Kratz, J. Krier, A. Kuznetsov, B. Lommel, K. Nishio, H. Nitsche, J. P. Omtvedt, O. Petrushkin, D. Rudolph, J. Runke, F. Samadani, M. Schädel, B. Schausten, A. Türler, A. Yakushev, and Q. Zhi, “Experimental study of the 238U(36S, 3–5n)269–271Hs reaction leading to the observation of 270Hs,” Phys. Rev. C 81, 061601 (2010).

    ADS  Google Scholar 

  56. O. V. Grusha, V. O. Kordyukevich, Yu. V. Melikov, L. N. Syutkina, A. F. Tulinov, O. A. Yuminov, “Life-time measurement of fissionable nuclei produced in the development of neutron emission: (I). Lifetime of plutonium isotopes,” Nucl. Phys. A 429, 313 (1984).

    ADS  Google Scholar 

  57. J. Gilat, “Analytical approximation of the combinatorial calculation of nuclear level densities,” Phys. Rev. C 1, 1432 (1970).

    ADS  Google Scholar 

  58. W. Reisdorf, “Analysis of fissionability data at high excitation energies,” Z. Phys. A 300, 227 (1981); W. Reisdorf and M. Schädel, “How well do we understand the synthesis of heavy elements by heavy-ion induced fusion?,” Z. Phys. A 343, 47 (1992).

    ADS  Google Scholar 

  59. E. A. Cherepanov and A. S. Iljinov, “Statistical calculations of nucleus levels densities,” Nucleonika 25, 611–621 (1980).

    Google Scholar 

  60. A. V. Ignatyuk, Statistical Properties of Excited Atomic Nuclei (Energoatomizdat, Moscow, 1983) [in Russian].

    Google Scholar 

  61. A. V. Ignatyuk, K. K. Istekov, and G. N. Smirenkin, “The role of collective effects with systematics of level density of nuclei,” Yad. Fiz. 29, 875–883 (1979).

    Google Scholar 

  62. A. V. Ignatyuk and Yu. N. Shubin, “The influence of discrete structure of single-particle spectrum on thermodynamic functions of nuclei,” Yad. Fiz. 8, 1135–1141 (1968).

    Google Scholar 

  63. V. Weisskopf, “Statistics and nuclear reactions,” Phys. Rev. 52, 295 (1937); V. Weisskopf and D. H. Ewing, “On the yield of nuclear reactions with heavy elements,” Phys. Rev. 57, 472 (1940).

    ADS  Google Scholar 

  64. N. Bohr and J. A. Wheeler, “The mechanism of nuclear fission,” Phys. Rev. 56, 426 (1939).

    ADS  Google Scholar 

  65. P. Fröbrich and R. Lipperheide, Theory of Nuclear Reactions (Clarendon, Oxford, 1996).

    Google Scholar 

  66. H. Bethe and R. Bacher, “Nuclear physics. A. Stationary states of nuclei,” Rev. Mod. Phys. 8, 82–229 (1936); H. Bethe, “Nuclear physics. B. Nuclear dynamics, theoretical,” Rev. Mod. Phys. 9, 69–244 (1937); M. S. Livingston and H. Bethe, “Nuclear physics. C. Nuclear dynamics, experimental,” Rev. Mod. Phys. 9, 245–390 (1937).

    ADS  Google Scholar 

  67. Yu. F. Smirnov and Yu. M. Tchulvil’sky, “The structural forbiddenness of the heavy fragmentation of the atomic nucleus,” Phys. Lett. B 134, 25 (1984).

    ADS  Google Scholar 

  68. O. F. Nemets, V. G. Neudachin, A. T. Rudchik, Yu. F. Smirnov, and Yu. M. Tchuvil’sky, Nucleon Clusters in Atomic Nuclei and Multi-Nucleon Transfer Reactions (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  69. J. P. Bondorf, M. Sobel, D. Sperber, “Classical dynamical theory of heavy ion fusion and scattering,” Phys. Rep. 15, 83 (1974); D. Glas and U. Mosel, “On the critical distance in fusion reactions,” Nucl. Phys. A 237, 429 (1975); J. R. Birkelund, L. E. Tubbs, and J. R. Huizenga, “Heavy-ion fusion: Comparison of experimental data with classical trajectory models,” Phys. Rep. 56, 107 (1979).

    ADS  Google Scholar 

  70. A. S. Il’inov, Yu. Ts. Oganesyan, and E. A. Cherepanov, “Formation of weakly excited compound nuclei and possibilities of synthesis of heavy and superheavy elements,” Yad. Fiz. 36, 118–129 (1982).

    Google Scholar 

  71. J. Gabin, D. Guerreau, M. Lefort, and X. Tarrago, “Limitation to complete fusion during a collision between two complex nuclei,” Phys. Rev. C 9, 1018 (1974).

    ADS  Google Scholar 

  72. D. H. E. Gross and H. Kalinowski, “Friction model of heavy-ion collisions,” Phys. Rep. 45, 175 (1978); D. H. E. Gross, R. C. Nayak, and L. Satpathy, “A classical description of deep inelastic collisions with surface friction and deformation,” Z. Phys. A 299, 63 (1981); P. Fröbrich, “Fusion and capture of heavy ions above the barrier: Analysis of experimental data with the surface friction model,” Phys. Rep. 116, 337 (1984).

    ADS  Google Scholar 

  73. R. Bass, “Fusion of heavy nuclei in a classical model,” Nucl. Phys. A 231, 45 (1974).

    ADS  Google Scholar 

  74. J. P. Blocki, J. Randrup, W. J. Swiatecki, and C. F. Tsang, “Proximity forces,” Ann. Phys. (New York) 105, 427 (1977).

    ADS  Google Scholar 

  75. H. J. Krappe, J. R. Nix, and A. J. Sierk, “Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations,” Phys. Rev. C 20, 992 (1979).

    ADS  Google Scholar 

  76. D. Berdichevsky and W. Reisdorf, “Systematic study of the heavy-ion fusion barrier in the frozen approximation,” Z. Phys. A 327, 217 (1987).

    ADS  Google Scholar 

  77. G. R. Satcher and W. G. Love, “Folding model potentials from realistic interactions for heavy-ion scattering,” Phys. Rep. 55, 183 (1975).

    ADS  Google Scholar 

  78. C. M. Will and J. W. Guinn, “Tunneling near the peaks of potential barriers: Consequences of higher-order Wentzel-Kramers-Brillouin corrections,” Phys. Rev. A 37, 3674 (1988).

    ADS  Google Scholar 

  79. W. J. Swiatecki, “The dynamics of nuclear coalescence or reseparation,” Phys. Scr. 24, 113 (1981); S. Bjøornholm and W. J. Swiatecki, “Dynamical aspects of nucleus-nucleus collisions,” Nucl. Phys. A 391, 471 (1982); J. P. Blocki, H. Feldmier, and W. J. Swiatecki, “Dynamical hindrance to compound-nucleus formation in heavy-ion reactions,” Nucl. Phys. A 459, 145 (1986).

    ADS  Google Scholar 

  80. V. V. Volkov, “What it the most realistic mechanism of the compound nucleus formation in the complete fusion of two massive nuclei?,” in Proceedings of the Symposium on Nuclear Clusters. Rauischholzhausen, Germany, 2002 (EP Systema, Debrecen, 2003), p. 373.

    Google Scholar 

  81. Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, “Diffusion mechanism for synthesis of superheavy elements,” Phys. Rev. C 55, 1011 (1997); Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, “Fluctuation-dissipation model for synthesis of superheavy elements,” Phys. Rev. C 59, 796 (1999).

    ADS  Google Scholar 

  82. C. E. Aguiar, V. C. Barbosa, and R. Donangelo, “Thermal fluctuations in heavy-ion fusion reactions: (II). Multidimensional models,” Nucl. Phys. A 517, 205 (1999); V. I. Zagrebaev, “Synthesis of superheavy nuclei: Nucleon collectivization as a mechanism for compound nucleus formation,” Phys. Rev. C 64, 034606 (2001); W. J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski, “Fusion by diffusion. II. Synthesis of transfermium elements in cold fusion reactions,” Phys. Rev. C 71, 014602 (2005).

    ADS  Google Scholar 

  83. J. Maruhn and W. Greiner, “The asymmetric two center shell model,” Z. Phys. A 251, 431–457 (1972).

    Google Scholar 

  84. G. D. Adeev, I. A. Gamalya, and P. A. Cherdantsev, “Single-nucleon states and energy surfaces of 238U in the fission process,” Yad. Fiz. 12, 272–283 (1971).

    Google Scholar 

  85. G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Problems in description of fusion of heavy nuclei in the two-center shell model approach,” Nucl. Phys. A 646, 29–52 (1999).

    ADS  Google Scholar 

  86. A. Diaz-Torres, G. G. Adamian, N. V. Antonenko, and W. Scheid, “Melting or nucleon transfer in fusion of heavy nuclei?,” Phys. Lett. B 481, 228–235 (2000).

    ADS  Google Scholar 

  87. G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and W. Scheid, “Dynamical restriction for growing neck in a dinuclear system,” Nucl. Phys. A 671, 233–254 (2000).

    ADS  Google Scholar 

  88. G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Nucl. Phys. A 633, 409–420 (1998); N. V. Antonenko, G. G. Adamian, W. Scheid, and V. V. Volkov, “Competition between complete fusion and quasifission in dinuclear system,” Nuovo Cim. A 110, 1143–1148 (1997).

    ADS  Google Scholar 

  89. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Isotopic dependence of fusion cross sections in reactions with heavy nuclei,” Nucl. Phys. A 678, 24–38 (2000).

    ADS  Google Scholar 

  90. G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Analysis of survival probability of super-heavy nuclei,” Phys. Rev. C 62, 064303 (2000).

    ADS  Google Scholar 

  91. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Isotopic trends in the production of superheavy nuclei in cold fusion reactions,” Phys. Rev. C 69, 011601 (2004).

    ADS  Google Scholar 

  92. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Model of competition between fusion and quasifission in reactions with heavy nuclei,” Nucl. Phys. A 618, 176–198 (1997).

    ADS  Google Scholar 

  93. G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, “Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei,” Nucl. Phys. A 627, 361–378 (1997).

    ADS  Google Scholar 

  94. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Unexpected isotopic trends in the synthesis of super-heavy nuclei,” Phys. Rev. C 69, 014607 (2004).

    ADS  Google Scholar 

  95. G. G. Adamian, N. V. Antonenko, and W. Scheid, “Possibilities of synthesis of new superheavy nuclei in actinide-based fusion reactions,” Phys. Rev. C 69, 044601 (2004).

    ADS  Google Scholar 

  96. W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” Nucl. Phys. 81, 1–58 (1966); V. M. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nucl. Phys. A 95, 420–442 (1967).

    Google Scholar 

  97. R. W. Lougheed, E. K. Hulet, J. F. Wild, K. J. Moody, R. J. Dougan, C. M. Gannett, R. A. Henderson, D. C. Hoffman, and D. M. Lee, “The discovery and spontaneous fission properties of 262No,” in Fifty Years with Nuclear Fission (La Grange Park, 1989), Vol. 2, pp. 694–697.

    Google Scholar 

  98. A. G. Demin, S. P. Tretyakova, V. K. Utyonkov, and I. V. Shirokovsky, “On the properties of the element 106 isotopes produced in the reactions Pb + 54Cr,” Z. Phys. A 315, 197–200 (1984).

    ADS  Google Scholar 

  99. P. Möller, S. G. Nilsson, and R. J. Nix, “Calculated ground-state properties of heavy nuclei,” Nucl. Phys. A 229, 292–319 (1974); S. Cwiok, V. V. Pashkevich, J. Dudek, and W. Nazarewicz, “Fission barriers of transfermium elements,” Nucl. Phys. A 410, 254–270 (1983); A. Sobiczewski, Z. Patyk, and S. Cwiok, “Do the superheavy nuclei really form an island?,” Phys. Lett. B 186, 6–8 (1987); Z. Patyk and A. Sobiczewski, “Ground-state properties of the heaviest nuclei analyzed in a multidimensional deformation space,” Nucl. Phys. A 533, 132–152 (1991).

    ADS  Google Scholar 

  100. R. Smolanczuk, J. Skalski, and A. Sobiczewski, “Spontaneous-fission half-lives of deformed super-heavy nuclei,” Phys. Rev. C 52, 1871–1880 (1995).

    ADS  Google Scholar 

  101. A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, “Closed shells for Z > 82 and N > 126 in a diffuse potential well,” Phys. Lett. 22, 500–502 (1966); H. Meldner, “Predictions of new magic regions and masses for superheavy nuclei from calculations with realistic shell-model single-particle Hamiltonians,” Ark. Fys. 36, 593–600 (1967); U. Mosel and W. Greiner, “On the stability of superheavy nuclei against fission,” Z. Phys. A 222, 261–282 (1969); F. O. Fiset, and R. J. Nix, “Calculation of half-lives for superheavy nuclei,” Nucl. Phys. A 193, 647–671 (1972); S. G. Nilsson, J. R. Nix, A. Sobiczewski, Z. Szyma ski, S. Wycech, C. Gustafson, and P. Möller. “On the spontaneous fission of nuclei with Z near 114 and N near 184,” Nucl. Phys. A 115, 545–562 (1968); J. Randrup, S. E. Larsson, P. Möller, S. G. Nilsson, K. Pomorski, and A. Sobiczewski, “Spontaneous-fission half-lives for even nuclei with Z ≥ 92,” Phys. Rev. C 13, 229–239 (1976); P. Möller and R. J. Nix, “Stability of heavy and superheavy elements,” J. Phys. G: Nucl. Part. Phys. 20, 1681–1747 (1994); A. Sobiczewski, “Progress in theoretical understanding of properties of heaviest nuclei,” Physics of Particles and Nuclei 25, 295–311 (1994).

    ADS  Google Scholar 

  102. J. Decharge, J. -F. Berger, K. Dietrich, and M. S. Weiss, “Superheavy and hyperheavy nuclei in the form of bubbles or semi-bubbles,” Phys. Lett. B 451, 275–282 (1999).

    ADS  Google Scholar 

  103. M. Bender, W. Nazarewicz, and P. G. Reinhard, “Shell stabilization of super- and hyperheavy nuclei without magic gaps,” Phys. Lett. B 515, 42–48 (2001).

    ADS  Google Scholar 

  104. P. G. Reinhard, “The relativistic mean-field description of nuclei and nuclear dynamics,” Rep. Prog. Phys. 52, 439–514 (1989); P. Ring, “Relativistic mean field theory in finite nuclei,” Prog. Part. Nucl. Phys. 37, 193–263 (1996); M. Bender, P. H. Heenen, and n- P. G. Reinhard, “Self-consistent mean-field models for nuclear structure,” Rev. Mod. Phys. 75, 121–180 (2003); J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L.S. Geng, “Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei,” Prog. Part. Nucl. Phys. 57, 470–563 (2006); J. J. Li, W. H. Long, J. Margueron, and N. Van Giai, “Superheavy magic structures in the relativistic Hartree-Fock-Bogoliubov approach,” Phys. Lett. B 732, 169–173 (2014).

    ADS  Google Scholar 

  105. S. Cwiok, J. Dobaczewski, P. -H. Heenen, P. Magierski, W. Nazarewicz, “Shell structure of the superheavy elements,” Nucl. Phys. A 611, 211–246 (1996).

    ADS  Google Scholar 

  106. M. Bender, K. Rutz, P. -G. Reinhard, J. A. Maruhn, W. Greiner, “Shell structure of superheavy nuclei in self-consistent mean-field models,” Phys. Rev. C 60, 034304 (1999).

    ADS  Google Scholar 

  107. J. Galin, D. Guerreau, M. Lefort, and X. Tarrago, “Limitation to complete fusion during a collision between two complex nuclei,” Phys. Rev. C: 9, 1018–1024 (1974).

    ADS  Google Scholar 

  108. W. Morawek, D. Ackermann, T. Brohm, H. -G. Clerc, U. Gollerthan, E. Hanelt, M. Horz, W. Schwab, B. Voss, K. -H. Schmidt, and F. P. Hessberger, “Break-down of the compound-nucleus model in the fusion-evaporation process for 110Pd + 110Pd,” Z. Phys. A 341, 75 (1991).

    ADS  Google Scholar 

  109. S. Raman, C. W. Nester, and P. Tikkanen, “Transition probability from the ground to the first-excited 2+ state of even-even nuclides,” At. Data Nucl. Data Tables 78, 1–128 (2001).

    ADS  Google Scholar 

  110. G. G. Adamian, N. V. Antonenko, R.V. Jolos, S. P. Ivanova, O. I. Melnikova, Effective nucleus-nucleus potential for calculation of potential energy of a dinuclear system,” Int. J. Mod. Phys. E 5, 191–216 (1996).

    ADS  Google Scholar 

  111. W. D. Myers, Droplet Model of Atomic Nucleus (Plenum Press, New York, 1977).

    Google Scholar 

  112. R. Schmidt and J. Teichert, Preprint No. E4-80-527 (JINR, Dubna, 1980).

  113. L. G. Moretto and J. S. Sventek, “A theoretical approach to the problem of partial equilibration in heavy ion reactions,” Phys. Lett. B 58, 26–30 (1975).

    ADS  Google Scholar 

  114. D. J. Hinde, “Neutron emission as a clock and thermometer to probe the dynamics of fusion-fission and quasifission,” Nucl. Phys. A 553, 255–270 (1993).

    ADS  Google Scholar 

  115. S. Ayik, B. Schürmann, and W. Nörenberg, “Microscopic transport theory of heavy-ion collisions,” Z. Phys. A 277, 299–310 (1976).

    ADS  Google Scholar 

  116. D. Vermeulen, H. G. Clerc, C.-C. Sahm, K.-H. Schmidt, J. G. Keller, G. Münzenberg, and W. Reisdorf, “Cross sections for evaporation residue production near the N = 126 shell closure,” Z. Phys. A 318, 157–169 (1984); C.-C. Sahm, H. G. Clerc, K.-H. Schmidt, W. Reisdorf, P. Armbruster, F. P. Hessberger, J. G. Keller, G. Münzenberg, and D. Vermeulen, “Hindrance of fusion in central collisions of heavy, symmetric nuclear systems,” Z. Phys. A 319, 113–118 (1984); C. -C. Sahm, H. G. Clerc, K.-H. Schmidt, W. Reisdorf, P. Armbruster, F. P. Hessberger, J. G. Keller, G. Münzenberg, and D. Vermeulen, “Fusion probability of symmetric heavy, nuclear systems determined from evaporation-residue cross sections,” Nucl. Phys. A 441, 316–343 (1985).

    ADS  Google Scholar 

  117. A. S. Iljinov, Yu. Ts. Oganessian, and E. A. Cherepanov, “Effect of γ-ray emission on production cross section of transuranium elements in heavy ion reactions,” Sov. J. Nucl. Phys. 33, 526–530 (1981).

    Google Scholar 

  118. R. V. Jolos and A. K. Nasirov, “On the influence of multi-nucleon transfer on the interaction potential of nuclei,” Sov. J. Nucl. Phys. 45, 1298–1300 (1987).

    Google Scholar 

  119. E. A. Cherepanov, V. V. Volkov, N. V. Antonenko, V. P. Permjakov, and A. K. Nasirov, “Model of competition between complete fusion and quasifission in reactions with massive nuclei,” Nucl. Phys. A 583, 165–168 (1995).

    ADS  Google Scholar 

  120. H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica A 7(4), 284–304 (1940).

    MathSciNet  MATH  Google Scholar 

  121. P. Grange, Jun-Qing Li, H. A. Weidenmüller, “Induced nuclear fission viewed as a diffusion process: Transients,” Phys. Rev. C 27, 2063–2077 (1983); K. H. Bhatt, P. Grange, and B. Hiller, “Nuclear friction and lifetime of induced fission,” Phys. Rev. C 33, 954–968 (1986); P. Grange, “Effects of transients on particle emission prior to fission in a transport description of the fission process,” Nucl. Phys. A 428, 37–62 (1984).

    ADS  Google Scholar 

  122. H. J. Fink, J. Maruhn, W. Scheid, and W. Greiner, “Theory of fragmentation dynamics in nucleus-nucleus collisions,” Z. Physik 268(3), 321 (1974).

    ADS  Google Scholar 

  123. G. G. Adamian, N. V. Antonenko, and R. V. Jolos, “Mass parameters for dinuclear system,” Nucl. Phys. A 584, 205–220 (1995).

    ADS  Google Scholar 

  124. G. G. Adamian, N. V. Antonenko, R. V. Jolos, and W. Scheid, “Neck dynamics at approach stage of heavy ion collisions,” Nucl. Phys. A 619, 241–260 (1997).

    ADS  Google Scholar 

  125. N. V. Antonenko and R. V. Jolos, “Mechanism of enhanced yield of light particles in compound nucleus formation: Diffusion description,” Z. Phys. A 341, 459–463 (1992).

    ADS  Google Scholar 

  126. N. V. Antonenko, S. P. Ivanova, R. V. Jolos, and W. Scheid, “Light nuclei production in fusion of heavy ions,” Phys. Rev. C 50, 2063–2068 (1994).

    ADS  Google Scholar 

  127. G. D. Adeev and I. I. Gonchar, “The dynamical description of the mass distribution of fission fragments,” Z. Phys. A 320, 451–457 (1985); G. D. Adeev and I. I. Gonchar, “A simplified two-dimensional diffusion model for calculating the fission-fragment kinetic-energy distribution,” Z. Phys. A 322(3), 479–486 (1985).

    ADS  Google Scholar 

  128. J. Randrup, “Mass transport in nuclear collisions,” Nucl. Phys. A 307, 319–348 (1978); J. Randrup, “Theory of transfer-induced transport in nuclear collisions,” Nucl. Phys. A 327, 490 (1979).

    ADS  Google Scholar 

  129. H. Feldmeier, “transport phenomena in dissipative heavy-ion collisions: The one-body dissipation approach,” Rep. Prog. Phys. 50, 915–994 (1987).

    ADS  Google Scholar 

  130. W. Nörenberg, Heavy Ion Collisions (North-Holland, Amsterdam, 1980), Vol. 2.

    Google Scholar 

  131. V. S. Korolyuk, N. I. Portenko, A. V., Skorokhod, and A. F. Turbin, Handbook on Probability Theory and Mathematical Statistics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  132. H. Gäggeler, T. Sikkeland, G. Wirth, W. Brüchle, W. Bögl, G. Franz, G. Herrmann, J. V. Kratz, J. V. Schädel, K. Sümmerer, and W. Weber, “Probing sub-barrier fusion and extra-push by measuring fermium evaporation residues in different heavy ion reactions,” Z. Phys. A 316, 291–307 (1984).

    ADS  Google Scholar 

  133. H. Hofmann and P. J. Siemens, “Linear response theory for dissipation in heavy-ion collisions,” Nucl. Phys. A 257, 165–188 (1976); H. Hofmann and P. J. Siemens, “On the dynamics of statistical fluctuations in heavy ion collisions,” 275, 464–486 (1977).

    ADS  Google Scholar 

  134. H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications (Springer, Berlin, 1989).

    MATH  Google Scholar 

  135. I. I. Gonchar and G. I. Kosenko, “Is the Kramers formula applicable to describing a decay of highly excited nuclear systems?,” Yad. Fiz. 53, 133–142 (1991).

    Google Scholar 

  136. J. T oke, R. Bock, G. X. Dai, A. Gobbi, S. Gralla, K. D. Hildenbrand, J. Kuzminski, W. F. J. Müller, A. Olmi, H. Stelzer, B. B. Back, S. Bjornholm, “Quasifission-The mass-drift mode in heavy-ion reactions,” Nucl. Phys. A 440, 327–365 (1985).

    ADS  Google Scholar 

  137. P. Armbruster, “Entrance channel limitation of fusion,” in Proc. of Int. School-Seminar on Heavy Ion Physics. Dubna, 1986 (Dubna, 1987), pp. 83–102.

    Google Scholar 

  138. V. M. Strutinsky, “The fission width of excited nuclei,” Phys. Lett. B 47, 121–123 (1973); H. Hofmann and J. R. Nix, “Fission dynamics simplified,” Phys. Lett. B 122, 117–120 (1983); P. Fröbrich and G. R. Tillack, “Path-integral derivation for the rate of stationary diffusion over a multidimensional barrier,” Nucl. Phys. A 540, 353–364 (1992).

    ADS  Google Scholar 

  139. H. A. Weidenmiiller and Jing-Shang Zhang, “Stationary diffusion over a multidimensional potential barrier: A generalization of Kramers’ formula,” J. Stat. Phys. 34, 191–201 (1984).

    ADS  Google Scholar 

  140. K. Washiyama, D. Lacroix, and S. Ayik, “One-body energy dissipation in fusion reactions from mean-field theory,” Phys. Rev. C 79, 024609 (2009); S. Ayik, K. Washiyama, and D. Lacroix, “Fluctuation and dissipation dynamics in fusion reactions from a stochastic mean-field approach,” Phys. Rev. C: 79, 054606 (2009).

    ADS  Google Scholar 

  141. N. V. Antonenko, G. G. Adamian, E. A. Cherepanov, A. K. Nasirov, and V. V. Volkov, “Synthesis of super-heavy elements and dinuclear system concept of compound nucleus formation,” in Proc. of Int. Conf. Nuclear Structure at the Limits. Argonne, 1996 (Argonne, 1997), pp. 265–272.

    Google Scholar 

  142. K. Pomorski, J. Bartel, J. Richert, and K. Dietrich, “Evaporation of light particles from a hot, deformed and rotating nucleus,” Nucl. Phys. A 605, 87–119 (1996).

    ADS  Google Scholar 

  143. C. Stodel, S. Hofmann, F. P. Hessberger, V. Ninov, R. N. Sagaidak, A. G. Popeko, Yu. Ts. Oganessian, A. Yu. Lavrentjev, and A. V. Yeremin, “Evaporation residue cross sections for the reactions 86Kr + 130, 136Xe,” in GSI Scientific Report 1996 (Darmstadt, 1997), p. 17.

    Google Scholar 

  144. S. Hofmann, V. Ninov, F. P. Hessberger, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A. V. Yeremin, S. Saro, R. Janik, and M. Leino, “The new element 112,” Z. Phys. A 354, 229–230 (1996).

    ADS  Google Scholar 

  145. R. Vandenbosch and J. R. Huizenga, Nuclear Fission (Academic Press, New York, 1973).

    Google Scholar 

  146. P. Reiter, T. L. Khoo, C. J. Lister, D. Seweryniak, I. Ahmad, M. Alcorta, M. P. Carpenter, J. A. Cizewski, C. N. Davids, G. Gervais, J. P. Greene, W. F. Henning, R. V. F. Janssens, T. Lauritsen, S. Siem, A. A. Sonzogni, D. Sullivan, J. Uusitalo, I. Wiedenhöver, N. Amzal, P. A. Butler, A. J. Chewter, K. Y. Ding, N. Fotiades, J. D. Fox, P. T. Greenlees, R. -D. Herzberg, G. D. Jones, W. Korten, M. Leino, and K. Vetter, “Ground-state band and deformation of the Z = 102 isotope 254No,” Phys. Rev. Lett. 82, 509–512 (1999).

    ADS  Google Scholar 

  147. A. J. Sierk, “Macroscopic model of rotating nuclei,” Phys. Rev. C 33, 2039–2053 (1986).

    ADS  Google Scholar 

  148. W. D. Myers and W. J. Swiatecki, “Thomas-Fermi fission barriers,” Phys. Rev. C 60, 014606 (1999); W. D. Myers and W. J. Swiatecki, “Nuclear properties according to the Thomas-Fermi model,” Nucl. Phys. A 601, 141–167 (1996); W. D. Myers and W. J. Swiatecki, Report LBL-36803. Berkeley, 1994.

    ADS  Google Scholar 

  149. A. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Competition between evaporation channels in neutron-deficient nuclei,” Phys. Rev. C 68, 014616 (2003).

    ADS  Google Scholar 

  150. A. S. Zubov, G. G. Adamyan, N. V. Antonenko, S. P. Ivanova, and W. Sheid, “Survivability of excited superheavy nuclei,” Phys. At. Nucl. 66(2), 218–232 (2003).

    Google Scholar 

  151. K. -H. Schmidt, H. Delagrange, J. P. Dufour, N. Carjan, and A. Fleury, “Influence of shell structure and pairing correlations on the nuclear state density,” Z. Phys. A 308, 215–225 (1982); J. -J. Gaimard and K. -H. Schmidt, “A reexamination of the abrasion-ablation model for the description of the nuclear fragmentation reaction,” Nucl. Phys. A 531, 709–745 (1991).

    ADS  Google Scholar 

  152. V. S. Barashenkov and V. D. Toneev, Interaction of High-Energy Particles and Atomic Nuclei with Nuclei (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  153. S. G. Mashnik, A. J. Sierk, and K. K. Gudima, “Complex particle and light fragment emission in the cascade-exciton model of nuclear reactions,” arXiv:nuclth/0208048 (2002).

    Google Scholar 

  154. I. Dostrovsky, Z. Freenhel, and G. Iridlender, “Monte Carlo calculations of nuclear evaporation processes. III. Applications to low-energy reactions,” Phys. Rev. 116, 683–702 (1959).

    ADS  Google Scholar 

  155. A. B. Quint, W. Reisdorf, K. -H. Schmidt, P. Armbruster, F. P. Hessberger, S. Hofmann, J. Keller, G. Münzenberg, H. Stelzer, H.-G. Clerc, W. Morawek, and C.-C. Sahm, “Investigation of the fusion of heavy nearly symmetric systems,” Z. Phys. A 346, 119–131 (1993).

    ADS  Google Scholar 

  156. P. Möller, J. R. Nix, P. Armbruster, S. Hofmann, and G. Münzenberg, “Single-particle enhancement of heavy-element production,” Z. Phys. A 359, 251–255 (1997).

    ADS  Google Scholar 

  157. K. Thomas, K. T. R. Davies, A. J. Sierk, and J. R. Nix, “Dynamical thresholds for compound-nucleus formation in symmetric heavy-ion reactions,” Phys. Rev. C 28, 679–691 (1983).

    ADS  Google Scholar 

  158. M. Thoennessen, J. R. Beene, F. E. Bertrand, C. Baktash, M. L. Halbert, D. J. Horen, D. G. Sarantities, W. Spang, and D. W. Stracener, “Evidence for long formation times of near-barrier fusion reactions,” Phys. Rev. Lett. 70, 4055–4058 (1993).

    ADS  Google Scholar 

  159. Z. Patyk, A. Sobiczewski, P. Armbruster, and K.-H. Schmidt, “Shell effects in the properties of the heaviest nuclei,” Nucl. Phys. A 491, 267–280 (1989).

    ADS  Google Scholar 

  160. D. Berdichevsky, A. Lukasiak, W. Nörenberg, and P. Rozmej “Diabatic shifts and fluctuations of heavyion fusion barriers,” Nucl. Phys. A 499, 609–636 (1989).

    ADS  Google Scholar 

  161. A. G. Popeko, “Subbarrier cold fusion reactions leading to superheavy elements,” Nuovo Cim. A 110, 1137–1142 (1997).

    ADS  Google Scholar 

  162. N. Malhotra, R. Aroumougame, D. R. Saroha, and K. Gupta, “Model for fusion and cool compound nucleus formation based on the fragmentation theory,” Phys. Rev. C 33, 156–164 (1986).

    ADS  Google Scholar 

  163. J. Randrup and S. E. Koonin, “The disassembly of nuclear matter,” Nucl. Phys. A 356, 223–234 (1981).

    ADS  Google Scholar 

  164. J. Blocki and W. J. Swiatecki, “A generalization of the proximity force theorem,” Ann. Phys. (New York) 132, 53–65 (1981).

    ADS  Google Scholar 

  165. X. Wu, J. Gu, Y. Zhuo, Z. Li, Y. Chen, and W. Greiner, “Possible understanding of hyperdeformed 144–146Ba nuclei appearing in the spontaneous fission of 252Cf,” Phys. Rev. Lett. 79, 4542–4545 (1997).

    ADS  Google Scholar 

  166. S. Gales, Ch. Stoyanov, and A. I. Vdovin, “Damping of high-lying single-particle modes in heavy nuclei,” Phys. Rep. 166, 125–193 (1988).

    ADS  Google Scholar 

  167. A. I. Vdovin, V. V. Voronov, V. G. Solov’ev, and Ch. Stoyanov, “Quasiparticle-phonon model of a nucleus. V. Odd spherical nuclei,” Fiz. Elem. Chastits At. Yadra 16, 245–279 (1985).

    Google Scholar 

  168. L. A. Malov and V. G. Soloviev, “Fragmentation of single-particle states and neutron strength functions in deformed nuclei,” Nucl. Phys. A 270, 87–107 (1976).

    ADS  Google Scholar 

  169. A. S. Jensen, P. J. Siemens, and H. Hofmann, in Nucleon-Nucleon Interaction and the Many-Body Problem, Ed. by S. S. Wu and T. T. S. Kuo (World Scientific, Singapore, 1984), p. 122.

  170. G. E. Brown and M. Rho, “The giant Gamow-Teller resonance,” Nucl. Phys. A 372, 397–417 (1981).

    ADS  Google Scholar 

  171. W. Greiner and J. A. Maruhn, Nuclear Models (Springer-Verlag, Berlin/Heidelberg, 1996).

    MATH  Google Scholar 

  172. M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, “Funny hills: The shell-correction approach to nuclear shell effects and its applications to the fission process,” Rev. Mod. Phys. 44, 320–405 (1972).

    ADS  Google Scholar 

  173. F. A. Ivanyuk, “The adiabatic cranking model for large amplitudes,” Z. Phys. A 334, 69–75 (1989); F. A. Ivanyuk and K. Pomorski, “Collective friction coefficients in the relaxation time approximation,” Phys. Rev. C 53, 1861–1866 (1996).

    ADS  Google Scholar 

  174. H. Hofmann, “A quantal transport theory for nuclear collective motion: The merits of a locally harmonic approximation,” Phys. Rep. 284, 137–380 (1997).

    ADS  Google Scholar 

  175. G. F. Bertsch, “Frontiers and borderlines in many particles physics,” in Proc. of Enrico Fermi School of Physics. Varenna, 1987 (Amsterdam, 1988), p. 41.

    Google Scholar 

  176. J. Richert, T. Sami, and H. A. Weidenmüller, “Inertial parameters for collective nuclear variables from the Feynman path integral method,” Phys. Rev. C 26, 1018–1024 (1982).

    MathSciNet  ADS  Google Scholar 

  177. F. A. Ivanyuk, H. Hofmann, V. V. Pashkevich, and S. Yamaji, “Transport coefficients for shape degrees in terms of Cassini ovaloids,” Phys. Rev. C: 55, 1730–1746 (1997).

    ADS  Google Scholar 

  178. V. M. Kolomietz and P. J. Siemens, “Self-consistent field approximation to the linear response function for nuclear dissipation,” Nucl. Phys. A 314, 141–160 (1979).

    ADS  Google Scholar 

  179. S. Yamaji, F. A. Ivanyuk, and H. Hofmann, “Variation of transport coefficients for average fission dynamics with temperature and shape,” Nucl. Phys. A 612, 1–25 (1997).

    ADS  Google Scholar 

  180. V. Schneider, J. Maruhn, and W. Greiner, “Cranking model mass parameters for the asymmetrie two center shell model,” Z. Phys. A 323, 111–118 (1986).

    ADS  Google Scholar 

  181. S. Yamaji, K. -H. Ziegenhain, H. J. Fink, W. Greiner, and W. Scheid, “The mass transfer in the collision 238U+ 238U,” J. Phys. G 3, 1283–1308 (1977).

    ADS  Google Scholar 

  182. J. R. Primack, “Single-particle calculations in nuclear fission,” Phys. Rev. Lett. 17, 539–541 (1966).

    ADS  Google Scholar 

  183. J. J. Griffin, “Collective inertiae, level crossings and pairing,” Nucl. Phys. A 170, 395–400 (1971).

    ADS  Google Scholar 

  184. T. Lederberger and H. C. Pauli, “On the dynamics of fission: The role of reflection asymmetry in the nuclear shape,” Nucl. Phys. A 207, 1–32 (1973).

    ADS  Google Scholar 

  185. A. Diaz-Torres, N. V. Antonenko, and W. Scheid, “Dinuclear system in diabatic two-center shell model approach,” Nucl. Phys. A 652, 61–70 (1999).

    ADS  Google Scholar 

  186. A. Lukasiak, W. Cassing, and W. Nörenberg, “The diabatic two-center shell model,” Nucl. Phys. A. 426, 181 (1984); W. Cassing and W. Nörenberg, “Diabatic single-particle states: A convenient basis for dissipative nucleus-nucleus collisions,” Nucl. Phys. A 433, 467 (1985); A. Lukasiak and W. Nörenberg, “Diabatic interaction potential for nucleus-nucleus collisions,” Phys. Lett. B 139, 239–243 (1984).

    ADS  Google Scholar 

  187. W. Nörenberg and C. Riedel, “Entrance-channel coherence in dissipative heavy-ion collisions and compound-nucleus formation,” Z. Phys. A 290, 335–336 (1979); H. L. Yadav and W. Nörenberg, “Effects of local equilibration in dissipative heavy-ion collision,” Phys. Lett. B 115, 179–183 (1982).

    ADS  Google Scholar 

  188. C. Gregoire, C. Ngo, and B. Remaud, “Three dissipative regimes in heavy ion reactions-a macroscopic dynamical model,” Phys. Lett. B 99, 17–22 (1981); C. Gregoire, C. Ngo, and B. Remaud, “Fast fission phenomenon, deep inelastic reactions and compound nucleus formation described within a dynamical macroscopic model,” Nucl. Phys. A 383, 392–420 (1982).

    ADS  Google Scholar 

  189. W. Nörenberg, “Memory effects in the energy dissipation for slow collective nuclear motion,” Phys. Lett. B 104, 107–111 (1981); G. Lingxiao, Z. Yizhong, and W. Nörenberg, “Temperature-dependent optical potential and mean free path based on skyrme interactions,” Nucl. Phys. A 459, 77–92 (1986).

    ADS  Google Scholar 

  190. A. B. Larionov, M. Cabibbo, V. Baran, and M. Di Toro, “Zero-to-first sound transition for isovector modes in hot nuclei,” Nucl. Phys. A 648, 157–180 (1999).

    ADS  Google Scholar 

  191. G. F. Bertsch, P. F. Bortignon, and R. A. Broglia, “Damping of nuclear excitations,” Rev. Mod. Phys. 55, 287–314 (1983).

    ADS  Google Scholar 

  192. D. Pines and P. Noziéres, The Theory of Quantum Liquids (Benjamin, New York, Amsterdam, 1966).

    Google Scholar 

  193. G. Münzenberg, “Synthesis and investigation of superheavy elements: Perspectives with radioactive beams,” Phil. Trans. R. Soc. Ser. A, London, 356, 2083–2104 (1998)

    ADS  Google Scholar 

  194. Yu. Ts. Oganessian, A. Yu. Lavrentjev, A. G. Popeko, R. N. Sagaidak, A. V. Yeremin, S. Hofmann, F. P. Hessberger, V. Ninov, and C. Stodel, “Evaporation residue cross sections in the 86Kr + 130, 136Xe reactions,” in FLNR Scientific Report 1995–1996 (Dubna, 1997), pp. 62–64.

    Google Scholar 

  195. R. Smolanczuk, “Production mechanism of super-heavy nuclei in cold fusion reactions,” Phys. Rev. C 59, 2634–2639 (1999).

    ADS  Google Scholar 

  196. P. Müller and R. J. Nix, “Nuclear masses from a unified macroscopic-microscopic mode,” Atom. Data Nucl. Data Tables 39, 213–223 (1988).

    ADS  Google Scholar 

  197. P. Müller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, “Nuclear ground-state masses and deformations,” Atom. Data Nucl. Data Tables 59, 185–381 (1995).

    ADS  Google Scholar 

  198. V. Ninov, K. E. Gregorich, W. Loveland, A. Ghiorso, D. C. Hoffman, D. M. Lee, H. Nitsche, W. J. Swiatecki, U. W. Kirbach, C. A. Laue, J. L. Adams, J. B. Patin, D. A. Shaughnessy, D. A. Strellis, and P. A. Wilk, “Observation of superheavy nuclei produced in the reaction of 86Kr with 208Pb,” Phys. Rev. Lett. 83, 1104–1107 (1999).

    ADS  Google Scholar 

  199. S. Zubov, G. G. Adamian, N. V. Antonenko, S. P. Ivanova, and W. Scheid, “Isotopic dependence of neutron emission from dinuclear system,” Eur. Phys. J. A 33, 223–230 (2007).

    ADS  Google Scholar 

  200. I. Muntian, S. Hofmann, Z. Patyk, and A. Sobiczewski, “Properties of heaviest nuclei // Acta Phys. Pol. B 34, 2073–2082 (2003); I. Muntian, Z. Patyk, and A. Sobiczewski, “Calculated masses of heaviest nuclei,” Phys. At. Nucl. 66, 1015–1019 (2003); O. Parkhomenko, I. Muntian, Z. Patyk, and A. Sobiczewski “Nucleon separation energies for heaviest nuclei,” Acta Phys. Pol. B 34, 2153–2158 (2003).

    ADS  Google Scholar 

  201. W. D. Loveland, K. E. Gregorich, J. B. Patin, D. Peterson, C. Rouki, P. M. Zielinski, and K. Aleklett, “Search for the production of element 112 in the 48Ca + 238U reaction,” Phys. Rev. C 66, 044617 (2002).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Adamian.

Additional information

Original Russian Text © G.G. Adamian, N.V. Antonenko, A.S. Zubov, 2014, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2014, Vol. 45, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamian, G.G., Antonenko, N.V. & Zubov, A.S. Dinuclear systems in complete fusion reactions. Phys. Part. Nuclei 45, 848–923 (2014). https://doi.org/10.1134/S1063779614050025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779614050025

Keywords

Navigation