Skip to main content
Log in

Unified Mechanism behind the Appearance of T-Odd TRI and ROT Asymmetries in Actinide Fission Induced by Cold Polarized Neutrons

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Some shortcomings of the approaches that are used to describe T-odd ROT and TRI asymmetries in true ternary fission via reactions involving the emission of prescission alpha particles and which are based on employing the classical method of trajectory calculations are analyzed. These shortcomings are caused by the disregard of the interference between the fission widths of different sJs neutron resonance states formed in the first well of the deformation potential of fissile compound nuclei. It is shown that the method used in some studies to determine T-odd TRI-asymmetries for prescission alpha particles is at odds with basic concepts of the generalizedmodel of the nucleus and approaches to constructing collective (for example, bending) vibrations of a fissile compound nucleus. Quantum-mechanical fission theory is generalized via employing a unified mechanism of formation of T-odd TRI and ROT asymmetries for prescission alpha particles and evaporated photons (neutrons). The proposed mechanism takes correctly into account the effect of quantum rotation of a fissile compound nucleus on the angular distributions of fission fragments and alpha particles for true ternary fission, as well as on the angular distribution of prompt photons (neutrons) emitted by fragments originating from the delayed fission of the aforementioned nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jesinger, G. V. Danilyan, A. M. Gagarski, P. Geltenbort, F. Goennenwein, A. Koetzle, Ye. I. Korobkina, M. Mutterer, V. Nesvizhevsky, S. R. Neumaier, V. S. Pavlov, G. A. Petrov, V. I. Petrova, K. Schmidt, V. B. Shvachkin, and O. Zimmer, Phys. At. Nucl. 62, 1608 (1999).

    Google Scholar 

  2. P. Jesinger, A. Kötzle, A. M. Gagarski, F. Gönnenwein, G. Danilyan, V. S. Pavlov, V. B. Chvatchkin, M. Mutterer, S. R. Neumaier, G. A. Petrov, V. I. Petrova, V. Nesvizhevsky, O. Zimmer, P. Geltenbort, K. Schmidt, and K. Korobkina, Nucl. Instrum. Methods Phys. Res., Sect. A 440, 618 (2000).

    Article  ADS  Google Scholar 

  3. P. Jesinger, A. Kötzle, F. Gönnenwein, M. Mutterer, J. von Kalben, G. V. Danilyan, V. S. Pavlov, G. A. Petrov, A. M. Gagarski, W. H. Trzaska, S. M. Soloviev, V. V. Nesvizhevski, and O. Zimmer, Phys. At. Nucl. 65, 630 (2002).

    Article  Google Scholar 

  4. A. Gagarski, I. Guseva, F. Goennenwein, G. Petrov, P. Jesinger, V. Sokolov, T. Zavarukhina, M. Mutterer, J. von Kalbern, W. Trzaska, S. Khlebnikov, G. Tiourine, S. Soloviev, V. Nesvizhevsky, O. Zimmer, and T. Soldner, in Proceedings of the International Seminar on Interaction of Neutrons with Nuclei ISINN-14, Dubna, Russia, 2006 (JINR, Dubna, 2007), p.93.

    Google Scholar 

  5. F. Goennenwein, M. Mutterer, A. Gagarski, I. Guseva, G. Petrov, V. Sokolov, T. Zavarukhina, Yu. Gusev, J. von Kalben, V. Nesvizhevski, and T. Soldner, Phys. Lett. B 652, 13 (2007).

    Article  ADS  Google Scholar 

  6. A. Gagarski, G. Petrov, I. Guseva, T. Zavarukhina, F. Gonnenwein, M. Mutterer, J. von Kalben, W. Trzaska, M. Sillanpaa, Yu. Kopatch, G. Tiourine, T. Soldner, and V. Nesvizhevsky, in Proceedings of the International Seminar on Interaction of Neutrons with Nuclei ISINN-16, Dubna, Russia, 2008 (JINR, Dubna, 2009), p.356.

    Google Scholar 

  7. A. Gagarski, F. Gönnenwein, I. Guseva, P. Jesinger, Yu. Kopatch, T. Kuzmina, E. Lelièvre-Berna, M. Mutterer, V. Nesvizhevsky, G. Petrov, T. Soldner, G. Tiourine, W. H. Trzaska, and T. Zavarukhina, Phys. Rev. C 93, 054619 (2016).

    Article  ADS  Google Scholar 

  8. V. E. Bunakov, Phys. At. Nucl. 65, 616 (2002).

    Article  Google Scholar 

  9. V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 66, 1846 (2003).

    Article  Google Scholar 

  10. S. G. Kadmensky and L. V. Rodionova, Phys. At. Nucl. 66, 1219 (2004); 68, 1421 (2005).

    Article  Google Scholar 

  11. G. V. Danilyan, J. Klenke, Yu. N. Kopach, V. A. Krakhotin, V. V. Novitskii, V. S. Pavlov, and P. B. Shatalov, Phys.At.Nucl. 77, 677 (2014).

    Article  Google Scholar 

  12. I. S. Guseva and Yu. I. Gusev, Bull. Russ. Acad. Sci.: Phys. 71, 367 (2007).

    Article  Google Scholar 

  13. I. Guseva and Yu. Gusev, AIP Conf. Proc. 1175, 355 (2009).

    Article  ADS  Google Scholar 

  14. G. V. Danilyan, J. Klenke, V. A. Krakhotin, V. L. Kuznetsov, V. V. Novitskii, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl. 72, 1812 (2009).

    Article  Google Scholar 

  15. G. V. Danilyan, P. Granz, V. A. Krakhotin, F. Mezei, V. V. Novitsky, V. S. Pavlov, M. Russina, P. B. Shatalov, and T. Wilpert, Phys. Lett. B 679, 25 (2009).

    Article  ADS  Google Scholar 

  16. G. V. Danilyan, J. Klenke, V. A. Krakhotin, V. V. Novitskii, V. S. Pavlov, and P. B. Shatalov, Phys. At. Nucl. 73, 1116 (2010).

    Article  Google Scholar 

  17. G. V. Val’skii, A. M. Gagarskii, I. S. Guseva, D. O. Krinitsin, G. A. Petrov, Yu. S. Pleva, V. E. Sokolov, V. I. Petrova, T. A. Zavarukhina, and T. E. Kuz’mina, Bull. Russ. Acad. Sci.: Phys. 74, 767 (2010).

    Google Scholar 

  18. M. Mutterer and J. Theobald, Nuclear Decay Modes (IOP, Bristol, 1996), Chap.12.

    Google Scholar 

  19. S. G. Kadmensky, Phys. At. Nucl. 65, 1390 (2002).

    Article  Google Scholar 

  20. S. G. Kadmensky, Phys. At. Nucl. 68, 1968 (2005).

    Article  Google Scholar 

  21. S. G. Kadmensky and L. V. Rodionova, Phys. At. Nucl. 68, 1433 (2005).

    Article  Google Scholar 

  22. V. E. Bunakov and S. G. Kadmensky, Phys. At. Nucl. 71, 1200 (2008).

    Article  Google Scholar 

  23. S. G. Kadmensky, V. E. Bunakov, and L. V. Titova, Phys. At. Nucl. 78, 662 (2015).

    Article  Google Scholar 

  24. S. G. Kadmensky, V. E. Bunakov, and D. E. Lyubashevsky, Phys. At. Nucl. 80, 850 (2017).

    Article  Google Scholar 

  25. V.M. Strutinskiĭ, Sov. Phys. JETP 10, 613 (1960).

    Google Scholar 

  26. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1969, 1975), Vols. 1,2.

  27. J. R. Nix and W. J. Swiatecki, Nucl. Phys. A 71, 1 (1965).

    Article  Google Scholar 

  28. S. G. Kadmensky, D. E. Lyubashevsky, and L. V. Titova, Bull. Russ. Acad. Sci.: Phys. 79, 879 (2015).

    Article  Google Scholar 

  29. Yu. N. Kopach, A. B. Popov, W. I. Furman, N. N. Gonin, L. K. Kozlovskii, D. I. Tambovtsev, and Ya. Kliman, Phys. At. Nucl. 62, 840 (1999).

    Google Scholar 

  30. Yu.N. Kopatch, A. B. Popov, W. I. Furman, D. I. Tambovtsev, L. K. Kozlovsky, N. N. Gonin, and J. Kliman, in Seminar on Fission, Pont d’Oye IV, Castle of Pont d’Oye, Habay-la-Neuve, Belgium, 5–8 Oct. 1999, Ed. by C. Wagemans, O. Serot, and P. D’hondt (World Scientific, Singapore, 2000), p.123.

  31. P. Fong, Phys. Rev. C 3, 2025 (1971).

    Article  ADS  Google Scholar 

  32. C. F. Tsang, Phys. Scr. Suppl. A 10, 90 (1974).

    Article  ADS  Google Scholar 

  33. V. A. Rubchenya, Sov. J. Nucl. Phys. 35, 334 (1982).

    Google Scholar 

  34. N. Carjan, J. Phys. 37, 1279 (1976).

    Article  Google Scholar 

  35. O. Tanimura and T. Fliessbach, Z. Phys. A 328, 475 (1987).

    ADS  Google Scholar 

  36. S. G. Kadmensky, L. V. Titova, and A. O. Bulychev, Phys. At. Nucl. 78, 672 (2015).

    Article  Google Scholar 

  37. A. S. Roshchin, V. A. Rubchenya, and S. G. Yavshits, Phys. At. Nucl. 57, 914 (1994).

    Google Scholar 

  38. D. E. Lyubashevsky and S. G. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 74, 791 (2010).

    Article  Google Scholar 

  39. E. P. Wigner, Ann.Math. 62, 548 (1955); Ann.Math. 65, 203 (1957); Ann.Math. 67, 325 (1958).

    Article  MathSciNet  Google Scholar 

  40. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 31, 607 (1980).

    Google Scholar 

  41. S. G. Kadmenskiĭ, V. P. Markushev, and V. I. Furman, Sov. J. Nucl. Phys. 35, 164 (1982).

    Google Scholar 

  42. V. E. Bunakov, S. G. Kadmensky, and S. S. Kadmensky, Phys. At. Nucl. 71, 1887 (2008).

    Article  Google Scholar 

  43. D. E. Lyubashevsky, S. G. Kadmensky, and V. E. Bunakov, Bull. Russ. Acad. Sci.: Phys. 75, 973 (2011).

    Article  Google Scholar 

  44. S. S. Kadmensky and S. G. Kadmensky, Bull. Russ. Acad. Sci.: Phys. 74, 786 (2010).

    Article  Google Scholar 

  45. J. B. Wilhelmy, E. Cheifetz, R. C. Jared, S. G. Thompson, H. R. Bowman, and J. O. Rasmussen, Phys. Rev. C 5, 2041 (1972).

    Article  ADS  Google Scholar 

  46. A. Gavron, Phys. Rev. C 13, 2562(R) (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kadmensky.

Additional information

Original Russian Text © S.G. Kadmensky, V.E. Bunakov, D.E. Lubashevsky, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 4, pp. 433–442.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadmensky, S.G., Bunakov, V.E. & Lubashevsky, D.E. Unified Mechanism behind the Appearance of T-Odd TRI and ROT Asymmetries in Actinide Fission Induced by Cold Polarized Neutrons. Phys. Atom. Nuclei 81, 463–471 (2018). https://doi.org/10.1134/S1063778818040075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818040075

Navigation