Skip to main content
Log in

Double-beta decay: Present status

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The present status of double-beta-decay experiments (including the search for 2β +, ECβ +, and ECEC processes) are reviewed. The results of the most sensitive experiments are discussed. Average and recommended half-life values for two-neutrino double-beta decay are presented. Conservative upper limits on effective Majorana neutrino mass and the coupling constant of the Majoron to the neutrino are established as 〈m ν 〉 < 0.75 eV and 〈g ee 〉 < 1.9 × 10−4, respectively. Proposals for future double-betadecay experiments with a sensitivity for the 〈m ν 〉 at the level of 0.01–0.1 eV are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. V. Klapdor-Kleingrothaus, J. Hellmig, and M. Hirsch, J. Phys. G 24, 483 (1998).

    Article  ADS  Google Scholar 

  2. A. Faessler and F. Simkovic, Prog. Part. Nucl. Phys. 46, 233 (2001).

    Article  ADS  Google Scholar 

  3. J. D. Vergados, Phys. Rep. 361, 1 (2002).

    Article  ADS  Google Scholar 

  4. J.W. F. Valle, hep-ph/0608101.

  5. S. M. Bilenky, J. Phys. A 40, 6707 (2007).

    Article  MATH  ADS  Google Scholar 

  6. R. N. Mohapatra and A. Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56, 569 (2006).

    Article  ADS  Google Scholar 

  7. S. Pascoli, S. T. Petcov, and W. Rodejohann, Phys. Lett. B 558, 141 (2003).

    Article  ADS  Google Scholar 

  8. R. N. Mohapatra et al., hep-ph/0510213.

  9. S. Pascoli, S. T. Petcov, and T. Schwetz, Nucl. Phys. B 734, 24 (2006).

    Article  MATH  ADS  Google Scholar 

  10. V. A. Rodin et al., Nucl. Phys. A 766, 107 (2006); Nucl. Phys. A 793, 213 (2007).

    Article  ADS  Google Scholar 

  11. M. Kortelainen and J. Suhonen, Phys. Rev. C 75, 051303(R) (2007).

    Article  ADS  Google Scholar 

  12. M. Kortelainen and J. Suhonen, Phys. Rev. C 76, 024315 (2007).

    Article  ADS  Google Scholar 

  13. F. Simkovic et al., Phys. Rev. C 77, 045503 (2008).

    Article  ADS  Google Scholar 

  14. A. S. Barabash, JETP Lett. 68, 1 (1998).

    Article  ADS  Google Scholar 

  15. A. S. Barabash, Eur. Phys. J. A 8, 137 (2000).

    Article  ADS  Google Scholar 

  16. A. S. Barabash, Astrophys. Space Sci. 283, 607 (2003).

    Article  ADS  Google Scholar 

  17. A. D. Dolgov and A. Yu. Smirnov, Phys. Lett. B 621, 1 (2005).

    Article  ADS  Google Scholar 

  18. A. S. Barabash et al., Nucl. Phys. B 783, 90 (2007).

    Article  ADS  Google Scholar 

  19. G. B. Gelmini and M. Roncadelli, Phys. Lett. B 99, 411 (1981).

    Article  ADS  Google Scholar 

  20. C. Caso et al. (Particle Data Group), Eur. Phys. J. C 3, 1 (1998).

    Article  Google Scholar 

  21. R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics (World Sci., Singapore, 1991).

    Google Scholar 

  22. Z.G. Berezhiani, A. Yu. Smirnov, and J. W. F. Valle, Phys. Lett. B 291, 99 (1992).

    Article  ADS  Google Scholar 

  23. R. N. Mohapatra and E. Takasugi, Phys. Lett. B 211, 192 (1988).

    Article  ADS  Google Scholar 

  24. C. P. Burgess and J. M. Cline, Phys. Lett. B 298, 141 (1993); Phys. Rev. D 49, 5925 (1994).

    Article  ADS  Google Scholar 

  25. P. Bamert, C. P. Burgess, and R. N. Mohapatra, Nucl. Phys. B 449, 25 (1995).

    Article  ADS  Google Scholar 

  26. C. D. Carone, Phys. Lett. B 308, 85 (1993).

    Article  ADS  Google Scholar 

  27. R. N. Mohapatra, A. Perez-Lorenzana, and C. A. de S. Pires, Phys. Lett. B 491, 143 (2000).

    Article  ADS  Google Scholar 

  28. V. I. Tretyak and Yu. G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002).

    Article  ADS  Google Scholar 

  29. M. G. Inghram and J. H. Reynolds, Phys. Rev. 78, 822 (1950).

    Article  ADS  Google Scholar 

  30. T. Kirsten, W. Gentner, and O. A. Schaeffer, Z. Phys. A 202, 273 (1967).

    Google Scholar 

  31. S. R. Elliott, A. A. Hahn, and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987).

    Article  ADS  Google Scholar 

  32. A. L. Turkevich, T. E. Economou, and G. A. Cowan, Phys. Rev. Lett. 67, 3211 (1991).

    Article  ADS  Google Scholar 

  33. A. S. Barabash, Czech. J. Phys. 56, 437 (2006); nucl-ex/0602009.

    Article  ADS  Google Scholar 

  34. A. S. Barabash, AIP Conf. Proc. 942, 8 (2007); arXiv:0710.2194 [nucl-ex].

    Article  ADS  Google Scholar 

  35. H. V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004).

    Article  ADS  Google Scholar 

  36. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, Mod. Phys. Lett. A 21, 1547 (2006).

    Article  ADS  Google Scholar 

  37. H. V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16, 2409 (2001).

    Article  ADS  Google Scholar 

  38. A.M. Bakalyarov et al., Phys. Part. Nucl. Lett. 2, 77 (2005); hep-ex/0309016.

    Google Scholar 

  39. C. E. Aalseth et al., Mod. Phys. Lett. A 17, 1475 (2002).

    Article  ADS  Google Scholar 

  40. Yu. G. Zdesenko, F. A. Danevich, and V. I. Tretyak, Phys. Lett. B 546, 206 (2002).

    Article  ADS  Google Scholar 

  41. A. Strumia and F. Vissani, Nucl. Phys. B 726, 294 (2005).

    Article  ADS  Google Scholar 

  42. E. Caurier et al., Phys. Rev. Lett. 100, 052503 (2008).

    Article  ADS  Google Scholar 

  43. H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001).

    Article  ADS  Google Scholar 

  44. C. E. Aalseth et al., Phys. Rev. D 65, 092007 (2002).

    Article  ADS  Google Scholar 

  45. C. Arnaboldi et al., arXiv:0802.3439 [hep-ex].

  46. R. Bernabei et al., Phys. Lett. B 546, 23 (2002).

    Article  ADS  Google Scholar 

  47. F. A. Danevich et al., Phys. Rev. C 68, 035501 (2003).

    Article  ADS  Google Scholar 

  48. R. Arnold et al., Nucl. Phys. A 765, 483 (2006).

    Article  ADS  Google Scholar 

  49. O. K. Manuel, J. Phys. G 17, S221 (1991).

    Article  ADS  Google Scholar 

  50. M. Günther et al., Phys. Rev. D 55, 54 (1997).

    Article  ADS  Google Scholar 

  51. R. Arnold et al., Nucl. Phys. A 678, 341 (2000).

    Article  ADS  Google Scholar 

  52. J. Tanaka and H. Ejiri, Phys. Rev. D 48, 5412 (1993).

    Article  ADS  Google Scholar 

  53. C. Arnaboldi et al., Phys. Lett. B 557, 167 (2003).

    Article  ADS  Google Scholar 

  54. E. Fiorini, in Proc. of the Intern. Conf. NEUTRINO’ 77 (Nauka, Moscow, 1978), Vol. 2, p. 315.

    Google Scholar 

  55. E. Bellotti et al., Lett. Nuovo Cim. 33, 273 (1982).

    Article  Google Scholar 

  56. A. S. Barabash, JETP Lett. 51, 207 (1990); Preprint No. 188-89, ITEP (Moscow, 1989).

    ADS  Google Scholar 

  57. A. S. Barabash et al., Phys. Lett. B 345, 408 (1995).

    Article  ADS  Google Scholar 

  58. A. S. Barabash et al., Phys. At. Nucl. 62, 2039 (1999).

    Google Scholar 

  59. L. De Braeckeleer et al., Phys. Rev. Lett. 86, 3510 (2001).

    Article  ADS  Google Scholar 

  60. M. J. Hornish et al., Phys. Rev.C 74, 044314 (2006).

    Article  ADS  Google Scholar 

  61. R. Arnold et al., Nucl. Phys. A 781, 209 (2007).

    Article  ADS  Google Scholar 

  62. A. S. Barabash et al., JETP Lett. 79, 10 (2004).

    Article  ADS  Google Scholar 

  63. A. S. Barabash, Czech. J. Phys. 50, 447 (2000).

    Article  ADS  Google Scholar 

  64. A. S. Barabash, Phys. At. Nucl. 67, 438 (2004).

    Article  Google Scholar 

  65. A. A. Raduta and C. M. Raduta, Phys. Lett. B 647, 265 (2007).

    Article  ADS  Google Scholar 

  66. M. Aunola and J. Suhonen, Nucl. Phys. A 602, 133 (1996).

    Article  ADS  Google Scholar 

  67. J. Toivanen and J. Suhonen, Phys. Rev. C 55, 2314 (1997).

    Article  ADS  Google Scholar 

  68. A. Bakalyarov et al., JETP Lett. 76, 545 (2002).

    Article  ADS  Google Scholar 

  69. C. Arpesella et al., Nucl. Phys. B (Proc. Suppl.) 70, 249 (1999).

    Article  ADS  Google Scholar 

  70. A. S. Barabash et al., J. Phys. G 22, 487 (1996).

    Article  ADS  Google Scholar 

  71. S. Stoica and I. Mihut, Nucl. Phys. A 602, 197 (1996).

    Article  ADS  Google Scholar 

  72. J. Suhonen et al., Z. Phys. A 358, 297 (1997).

    Article  ADS  Google Scholar 

  73. E. Bellotti et al., Europhys. Lett. 3, 889 (1987).

    Article  ADS  Google Scholar 

  74. A. Piepke et al., Nucl. Phys. A 577, 493 (1994).

    Article  ADS  Google Scholar 

  75. A. S. Barabash et al., Z. Phys. A 352, 231 (1995).

    Article  ADS  Google Scholar 

  76. J. G. Hirsch et al., Phys. Rev. C 51, 2252 (1995).

    Article  ADS  Google Scholar 

  77. A. A. Klimenko et al., Czech. J. Phys. 52, 589 (2002).

    Article  ADS  Google Scholar 

  78. A. S. Barabash et al., Eur. Phys. J. A 11, 143 (2001).

    Article  ADS  Google Scholar 

  79. T. Tomoda, Phys. Lett. B 474, 245 (2000).

    Article  ADS  Google Scholar 

  80. B. Maier, Nucl. Phys. B (Proc. Suppl.) 35, 358 (1994).

    Article  ADS  Google Scholar 

  81. E. Bellotti et al., J. Phys. G 17, S231 (1991).

    Article  ADS  Google Scholar 

  82. R. Arnold et al., Nucl. Phys. A 636, 209 (1998).

    Article  Google Scholar 

  83. J. Suhonen, Phys. Rev. C 62, 042501 (2000).

    Article  ADS  Google Scholar 

  84. F. Simkovic and A. Faessler, Prog. Part. Nucl. Phys. 48, 201 (2002).

    Article  ADS  Google Scholar 

  85. J. Suhonen, Phys. Lett. B 477, 99 (2000).

    Article  ADS  Google Scholar 

  86. J. Suhonen, Nucl. Phys. A 700, 649 (2002).

    Article  ADS  Google Scholar 

  87. J. Suhonen and M. Aunola, Nucl. Phys. A 723, 271 (2003).

    ADS  Google Scholar 

  88. F. Simkovic et al., Phys. Rev. C 64, 035501 (2001).

    Article  ADS  Google Scholar 

  89. A. Morales et al., Nuovo Cimento A 100, 525 (1988).

    Article  ADS  Google Scholar 

  90. M. Hirsch et al., Z. Phys. A 347, 151 (1994).

    Article  ADS  Google Scholar 

  91. M. Doi and T. Kotani, Prog. Theor. Phys. 89, 139 (1993).

    Article  ADS  Google Scholar 

  92. Z. Sujkowski and S. Wycech, Phys. Rev. C 70, 052501(R) (2004).

    Article  ADS  Google Scholar 

  93. J. D. Vergados, Nucl. Phys. B 218, 109 (1983).

    Article  ADS  Google Scholar 

  94. A. S. Barabash, JETP Lett. 59, 677 (1994).

    ADS  Google Scholar 

  95. A. P. Meshik et al., Phys. Rev. C 64, 035205 (2001).

    Article  ADS  Google Scholar 

  96. Ju. M. Gavriljuk et al., Phys. At. Nucl. 69, 2124 (2006).

    Article  Google Scholar 

  97. P. Benes et al., AIP Conf. Proc. 942, 19 (2007).

    Article  ADS  Google Scholar 

  98. A. S. Barabash et al., J. Phys. G 34, 1721 (2007).

    Article  ADS  Google Scholar 

  99. J. R. Wilson, Czech. J. Phys. 56, 543 (2006).

    Article  ADS  Google Scholar 

  100. A. S. Barabash et al., Nucl. Phys.A 785, 371 (2007).

    Article  ADS  Google Scholar 

  101. P. Belli et al., Phys. Lett. B 658, 193 (2008).

    Article  ADS  Google Scholar 

  102. H. J. Kim et al., Nucl. Phys. A 793, 171 (2007).

    Article  ADS  Google Scholar 

  103. A. S. Barabash et al., Nucl. Phys.A 807, 269 (2008).

    Article  ADS  Google Scholar 

  104. J. Dawson et al., Nucl. Phys. A 799, 167 (2008).

    ADS  Google Scholar 

  105. P. Domin et al., Nucl. Phys. A 753, 337 (2005).

    Article  ADS  Google Scholar 

  106. A. Shukla et al., Eur. Phys. J. A 23, 235 (2005).

    Article  ADS  Google Scholar 

  107. P. K. Raina et al., Eur. Phys. J. A 28, 27 (2006).

    Article  ADS  Google Scholar 

  108. A. Shukla, P. K. Raina, and P. K. Rath, J. Phys. G 34, 549 (2007).

    Article  Google Scholar 

  109. A. S. Barabash and R. R. Saakyan, Phys. At. Nucl. 59, 179 (1996).

    Google Scholar 

  110. C. Saenz et al., Phys. Rev. C 50, 1170 (1994).

    Article  ADS  Google Scholar 

  111. S. I. Vasil’ev et al., JETP Lett. 57, 320 (1993).

    ADS  Google Scholar 

  112. P. Belli et al., Astropart. Phys. 10, 115 (1999).

    Article  ADS  Google Scholar 

  113. A. S. Barabash et al., Z. Phys. A 357, 351 (1997).

    Article  ADS  Google Scholar 

  114. R. G. Winter, Phys. Rev. 100, 142 (1955).

    Article  ADS  Google Scholar 

  115. M. B. Voloshin, G. V. Misel’makher, and R. A. Eramzhyan, JETP Lett. 35, 656 (1982).

    ADS  Google Scholar 

  116. J. Bernabeu et al., Nucl. Phys. B 223, 15 (1983).

    Article  ADS  Google Scholar 

  117. R. Arnold et al., Phys. Rev. Lett. 95, 182302 (2005).

    Article  ADS  Google Scholar 

  118. R. Arnold et al., Nucl. Instrum. Methods Phys. Res. A 536, 79 (2005).

    Article  Google Scholar 

  119. R. Arnold et al., JETP Lett. 80, 377 (2004).

    Article  ADS  Google Scholar 

  120. R. Arnold et al., Nucl. Instrum. Methods Phys. Res. A 354, 338 (1995).

    Article  ADS  Google Scholar 

  121. Yu. A. Shitov, Phys. At. Nucl. 69, 2090 (2006).

    Article  Google Scholar 

  122. F. Simkovic, P. Domin, and S. Semenov, J. Phys. G 27, 2233 (2001).

    Article  ADS  Google Scholar 

  123. C. Arnaboldi et al., Phys. Rev. Lett. 95, 142501 (2005).

    Article  ADS  Google Scholar 

  124. C. Arnaboldi et al., Nucl. Instrum. Methods Phys. Res. A 518, 775 (2004).

    Article  ADS  Google Scholar 

  125. I. Abt et al., hep-ex/0404039.

  126. Majorana Collab., nucl-ex/0311013.

  127. C. E. Aalseth et al., Nucl. Phys. B (Proc. Suppl.) 138, 217 (2005).

    Article  ADS  Google Scholar 

  128. M. Danilov et al., Phys. Lett. B 480, 12 (2000).

    Article  ADS  Google Scholar 

  129. A. S. Barabash, Czech. J. Phys. 52, 575 (2002).

    Article  ADS  Google Scholar 

  130. A. S. Barabash, Phys. At. Nucl. 67, 1984 (2004).

    Article  Google Scholar 

  131. F. Piquemal, Phys. At. Nucl. 69, 2096 (2006).

    Article  Google Scholar 

  132. Yu. G. Zdesenko, O. A. Ponkratenko, and V. I. Tretyak, J. Phys. G 27, 2129 (2001).

    Article  ADS  Google Scholar 

  133. H. V. Klapdor-Kleingrothaus et al., Nucl. Instrum. Methods Phys. Res. A 530, 410 (2004).

    Article  ADS  Google Scholar 

  134. M. K. Moe, Phys. Rev. C 44, R931 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Barabash.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabash, A.S. Double-beta decay: Present status. Phys. Atom. Nuclei 73, 162–178 (2010). https://doi.org/10.1134/S1063778810010187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778810010187

Keywords

Navigation