Skip to main content
Log in

Magnetic moments of spherical nuclei: Status of the problem and unsolved issues

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Dipole magnetic moments of more than 100 odd spherical nuclei are calculated within the theory of finite Fermi systems. For the effective interaction of nucleons within the theory of finite Fermi systems, use is made of a version that takes into account nuclear-medium-modified amplitudes for the exchange of one pion and one rho meson. A new tensor local charge ζ t is incorporated in the theory of finite Fermi systems in addition to the known orbital (ζ l ) and spin (ζ s ) local charges. Good agreement with experimental data, at a level of 0.1 to 0.2μ N , is obtained for the overwhelming majority of the nuclei considered here. Several cases of a significant discrepancy with experimental data, at a level of 0.3 to 0.5μ N , are revealed. Possibilities for removing these discrepancies are discussed. A detailed comparison with known results obtained within the multiparticle shell model is performed for 2p-to 1f-shell nuclei. Cases where the standard theory of finite Fermi systems must be extended by taking into account multiparticle configurations are found. Magnetic moments are analyzed for a number of long isotopic chains. Several new experimental values of magnetic moments for copper isotopes far from the beta-stability valleys are known. For the example of the copper-isotope chain, it is shown how the emergence of a deformation in the ground state of a nucleus can be revealed on the basis of a systematic analysis of magnetic moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion (Benjamin, New York, 1969; Mir, Moscow, 1971).

    Google Scholar 

  2. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Interscience, New York, 1967).

    Google Scholar 

  3. A. B. Migdal, Zh. Éksp. Teor. Fiz. 46, 1680 (1964) [Sov. Phys. JETP 19, 1136 (1964)].

    Google Scholar 

  4. E. W. Otten, in Treatise on Heavy-Ion Science, Ed. by D. A. Bromley (Plenum Press, New York, 1989), Vol. 8, p. 515.

    Google Scholar 

  5. N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).

    Article  ADS  Google Scholar 

  6. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (2nd Ed., Nauka, Moscow, 1982) (in Russian).

    Google Scholar 

  7. A. Arima and H. Horie, Prog. Theor. Phys. 11, 567 (1954).

    MathSciNet  Google Scholar 

  8. E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (Nauka, Moscow, 1978; Pergamon, Oxford, 1980).

    Google Scholar 

  9. M. A. Troitsky, Appendix to A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1965; Interscience, New York, 1967).

    Google Scholar 

  10. G. Racah, Phys. Rev. 76, 1352 (1949).

    Article  MATH  ADS  Google Scholar 

  11. A. R. Edmonds and B. H. Flowers, Proc. R. Soc. London, Ser. A 214, 51 (1952).

    Google Scholar 

  12. J. McCullen, B. F. Bayman, and L. Zamick, Phys. Rev. B 134, 515 (1964).

    Article  ADS  Google Scholar 

  13. É. E. Sapershteĭn and V. A. Khodel’, Yad. Fiz. 4, 701 (1966) [Sov. J. Nucl. Phys. 4, 497 (1966)].

    Google Scholar 

  14. M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 69, 034335 (2004).

    Google Scholar 

  15. A. B. Migdal, Rev. Mod. Phys. 50, 107 (1978).

    Article  ADS  Google Scholar 

  16. S. Shlomo and G. Bertsch, Nucl. Phys. A 243, 507 (1975).

    Article  ADS  Google Scholar 

  17. E. E. Sapershtein, S. V. Tolokonnikov, and S. A. Fayans, Preprint KIAÉ-2571 (Kurchatov Institute of Atomic Energy, Moscow), 1975.

  18. V. F. Dmitriev and V. B. Telitsin, Nucl. Phys. A 402, 581 (1983).

    Article  ADS  Google Scholar 

  19. G. A. Pik-Pichak, Yad. Fiz. 6, 265 (1967) [Sov. J. Nucl. Phys. 6, 192 (1967)].

    Google Scholar 

  20. V. A. Khodel’, Yad. Fiz. 23, 282 (1976) [Sov. J. Nucl. Phys. 23, 147 (1976)].

    Google Scholar 

  21. V. A. Khodel and E. E. Saperstein, Phys. Rep. 92, 183 (1982).

    Article  ADS  Google Scholar 

  22. A. B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N. Voskresensky, Phys. Rep. 192, 179 (1990).

    Article  ADS  Google Scholar 

  23. J. Speth, V. Klemt, J. Wambach, and G. E. Brown, Nucl. Phys. A 343, 382 (1980).

    Article  ADS  Google Scholar 

  24. G. E. Brown, E. Osnes, and Mannque Rho, Phys. Lett. B 163, 41 (1985).

    Article  ADS  Google Scholar 

  25. A. P. Platonov and É. E. Sapershteĭn, Yad. Fiz. 46, 437 (1987) [Phys. At. Nucl. 46, 231 (1987)].

    Google Scholar 

  26. Y. Aboussir, J. M. Pearson, A. K. Dutta, and F. Tondeur, At. Data Nucl. Data Tables 61, 127 (1995).

    Article  ADS  Google Scholar 

  27. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Yad. Fiz. 48, 1661 (1988) [Sov. J. Nucl. Phys. 48, 995 (1988)].

    Google Scholar 

  28. S. A. Fayans, Pis’ma Zh. Éksp. Teor. Fiz. 68, 161 (1998) [JETP Lett. 68, 169 (1998)].

    Google Scholar 

  29. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  30. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  31. N. I. Pyatov and S. A. Fayans, Fiz. Élem. Chastits At. Yadra 14, 953 (1983) [Sov. J. Part. Nucl. 14, 401 (1983)].

    Google Scholar 

  32. I. N. Borzov, S. V. Tolokonnikov, and S. A. Fayans, Yad. Fiz. 40, 1151 (1984) [Sov. J. Nucl. Phys. 40, 732 (1984)].

    Google Scholar 

  33. É. E. Sapershteĭn and V. A. Khodel’, Yad. Fiz. 6, 256 (1967) [Sov. J. Nucl. Phys. 6, 186 (1967)].

    Google Scholar 

  34. H. De Witte, PhD Thesis (Katholieke Universiteit, Leuven, Belgium, 2004).

  35. G. Martinez-Pinedo, A. P. Zuker, A. Poves, and E. Caurier, Phys. Rev. C 55, 187 (1997).

    Article  ADS  Google Scholar 

  36. V. A. Khodel, J. W. Clark, Haochen Li, and M. V. Zverev, Phys. Rev. Lett. 98, 216404 (2007).

    Google Scholar 

  37. V. A. Khodel’ and V. A. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 51, 553 (1990) [JETP Lett. 51, 626 (1990)].

    Google Scholar 

  38. V. V. Golovko, I. Kraev, T. Phalet, et al., Phys. Rev. C 70, 014312 (2004).

  39. K. T. Flanagan, G. Neyens, et al., (in preparation): U. Koester, private communication.

  40. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (Benjamin, New York, 1975; Mir, Moscow, 1977).

    Google Scholar 

  41. I. Hamamoto, Phys. Lett. B 61, 343 (1976).

    Article  ADS  Google Scholar 

  42. NNDC Databases, http://www.nndc.bnl.gov/be2.

  43. O. Sorlin, S. Leenhardt, C. Donzaud, et al., Phys. Rev. Lett. 88, 092501 (2002).

  44. O. Perry, O. Sorlin, S. Franchoo, et al., Phys. Rev. Lett. 96, 232501 (2006).

  45. J. E. Wise, J. R. Calarco, J. P. Connelly, et al., Phys. Rev. C 47, 2539 (1993).

    Article  ADS  Google Scholar 

  46. A. P. Platonov, E. E. Saperstein, S. V. Tolokonnikov, and S. A. Fayans, Yad. Fiz. 58, 612 (1995) [Phys. At. Nucl. 58, 556 (1995)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Saperstein.

Additional information

Original Russian Text © I.N. Borzov, E.E. Saperstein, S.V. Tolokonnikov, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 3, pp. 493–516.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borzov, I.N., Saperstein, E.E. & Tolokonnikov, S.V. Magnetic moments of spherical nuclei: Status of the problem and unsolved issues. Phys. Atom. Nuclei 71, 469–492 (2008). https://doi.org/10.1134/S1063778808030095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778808030095

PACS numbers

Navigation