Skip to main content
Log in

Quark-antiquark states and their radiative transitions in terms of the spectral integral equation: Charmonia

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Earlier by the authors (Yad. Fiz. 70, 68 (2007)), the states were treated in the framework of the spectral integral equation, together with simultaneous calculations of radiative decays of the considered bottomonia. In the present paper, such a study is carried out for the charmonium \((c\bar c)\) states. We reconstruct the interaction in the c-c sector on the basis of the data for the charmonium levels with J PC = 0−+, 1−−, 0++, 1++, 2++, 1+− and radiative transitions ψ(2S) → γχ c0(1P), γχ c1(1P), γχ c2(1P), γχ c(1S) and χ c0(1P), χ c1(1P), χ c2(1P) → γJ/ψ. The c-c levels and their wave functions are calculated for the radial excitations with n ≤ 6. Also, we determine the c-c component of the photon wave function using the e + e -annihilation data: e + e J/ψ(3097), ψ(3686), ψ(3770), ψ(4040), ψ(4160), ψ(4415) and perform the calculations of the partial widths of the two-photon decays for the n = 1 states η c0(1S), χ c0(1P), χ c2(1P) → γγ and n = 2 states η c0(2S) → γγ, χ c0(2P) → γγ. We discuss the status of the recently observed c-c states X(3872) and Y(3941): according to our results, the X(3872) can be either χ c1(2P) or η c2(1D), while Y(3941) is χ c2(2P).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Anisovich, L. G. Dakhno, M. A. Matveev, et al., Yad. Fiz. 70, 68 (2007); hep-ph/0510410.

    Google Scholar 

  2. A. V. Anisovich, V. V. Anisovich, B. N. Markov, et al., Yad. Fiz. 67, 794 (2004) [Phys. At. Nucl. 67, 773 (2004)].

    Google Scholar 

  3. V. V. Anisovich, M. N. Kobrinsky, D. I. Melikhov, and A. V. Sarantsev, Nucl. Phys. A 544, 747 (1992); A. V. Anisovich and V. A. Sadovnikova, Yad. Fiz. 55, 2657 (1992) [Sov. J. Nucl. Phys. 55, 1483 (1992)]; 57, 1393 (1994) [Phys. At. Nucl. 57, 1322 (1994)]; Eur. Phys. J. A 2, 199 (1998).

    Article  ADS  Google Scholar 

  4. V. V. Anisovich, D. I. Melikhov, and V. A. Nikonov, Phys. Rev. D 52, 5295 (1995); 55, 2918 (1997).

    Article  ADS  Google Scholar 

  5. A. V. Anisovich, V. V. Anisovich, and V. A. Nikonov, Eur. Phys. J. A 12, 103 (2001).

    Article  ADS  Google Scholar 

  6. A. V. Anisovich, V. V. Anisovich, V. N. Markov, and V. A. Nikonov, Yad. Fiz. 65, 523 (2002) [Phys. At. Nucl. 65, 497 (2002)].

    Google Scholar 

  7. A. V. Anisovich, V. V. Anisovich, M. A. Matveev, and V. A. Nikonov, Yad. Fiz. 66, 946 (2003) [Phys. At. Nucl. 66, 914 (2003)].

    Google Scholar 

  8. V. V. Anisovich, L. G. Dakhno, M. N. Markov, et al., Yad. Fiz. (in press); hep-ph/0406320, hep-ph/0410361.

  9. S. K. Choi et al. (Belle Collab.), Phys. Rev. Lett. 91, 262001 (2003).

    Google Scholar 

  10. D. Acosta et al. (CDF II Collab.), Phys. Rev. Lett. 93, 072001 (2004).

  11. V. M. Abrazov et al. (D0 Collab.), Phys. Rev. Lett. 93, 162002 (2004).

  12. B. Aubert et al. (Barbar Collab.), Phys. Rev. D 71, 071103 (2005).

  13. N. A. Törnqvist, hep-ph/0402237.

  14. F. E. Close and P. R. Page, Phys. Lett. B 578, 119 (2004).

    Article  ADS  Google Scholar 

  15. M. B. Voloshin, Phys. Lett. B 579, 316 (2004).

    Article  ADS  Google Scholar 

  16. C. Z. Yuan, X. M. Mo, and P. Wang, Phys. Lett. B 579, 74 (2004).

    Article  ADS  Google Scholar 

  17. C.-Y. Wong, Phys. Rev. C 69, 055202 (2004).

    Google Scholar 

  18. T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004).

  19. E. S. Swanson, Phys. Lett. B 588, 189 (2004).

    Article  ADS  Google Scholar 

  20. T. Skwarnicki, hep-ph/0311243.

  21. P. Bicudo, hep-ph/0401106.

  22. E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 69, 094019 (2004).

    Google Scholar 

  23. N. Isgur and M. B. Wiss, Phys. Lett. B 232, 113 (1989); 237, 527 (1990).

    Article  ADS  Google Scholar 

  24. A. V. Monohar and C. T. Sachrajda, Phys. Lett. B 592, 473 (2004).

    Article  Google Scholar 

  25. S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

    Article  ADS  Google Scholar 

  26. D. V. Bugg, Phys. Rev. D 71, 016006 (2005).

    Google Scholar 

  27. T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004).

  28. A. V. Anisovich, V. V. Anisovich, M. A. Matveev, et al., J. Phys. G 31, 1537 (2005).

    Article  ADS  Google Scholar 

  29. J. Gaiser et al., Phys. Rev. D 34, 711 (1986).

    Article  ADS  Google Scholar 

  30. C. J. Biddick et al., Phys. Rev. Lett. 38, 1324 (1977).

    Article  ADS  Google Scholar 

  31. J. J. Hernández-Rey, S. Navas, and C. Patrignani, Phys. Lett. B 592, 822 (2004).

    Google Scholar 

  32. M. Acciari et al., Phys. Lett. B 453, 73 (1999).

    Article  ADS  Google Scholar 

  33. K. Ackerstaff et al., Phys. Lett. B 439, 197 (1998).

    Article  ADS  Google Scholar 

  34. J. Dominick et al., Phys. Rev. D 50, 4265 (1994).

    Article  ADS  Google Scholar 

  35. T. A. Armstrong et al., Phys. Rev. Lett. 70, 2988 (1993).

    Article  ADS  Google Scholar 

  36. J. Linde and H. Snellman, Nucl. Phys. A 619, 346 (1997).

    Article  ADS  Google Scholar 

  37. J. Resag and C. R. Münz, Nucl. Phys. A 590, 735 (1995).

    Article  ADS  Google Scholar 

  38. M. Beyer, U. Bohn, M. G. Huber, et al., Z. Phys. C 55, 307 (1992).

    Article  Google Scholar 

  39. D. Ebert, R. N. Faustov, and V. O. Galkin, Phys. Rev. D 67, 014027 (2003).

    Google Scholar 

  40. S. N. Münz, Nucl. Phys. A 609, 364 (1996).

    Article  ADS  Google Scholar 

  41. S. N. Gupta, S. F. Radford, and W. W. Repko, Phys. Rev. D 54, 2075 (1996).

    Article  ADS  Google Scholar 

  42. G. A. Schuler, F. A. Berends, and R. van Gulik, Nucl. Phys. B 523, 423 (1998).

    Article  ADS  Google Scholar 

  43. H.-W. Huang et al. Phys. Rev. D 54, 2123 (1996); 56, 368 (1997).

    Article  ADS  Google Scholar 

  44. E. S. Ackleh, T. Barnes, et al., Phys. Rev. D 45, 232 (1992).

    Article  ADS  Google Scholar 

  45. M. A. DeWitt, H. M. Choi, and C. R. Ji, Phys. Rev. D 68, 054026 (2003).

    Google Scholar 

  46. B.-W. Xiao and B.-Q. Ma, Phys. Rev. D 68, 034020 (2003).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anisovich, V.V., Dakhno, L.G., Matveev, M.A. et al. Quark-antiquark states and their radiative transitions in terms of the spectral integral equation: Charmonia. Phys. Atom. Nuclei 70, 364–381 (2007). https://doi.org/10.1134/S1063778807020184

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778807020184

PACS numbers

Navigation