Skip to main content
Log in

Spectral Characteristics of Stochastic Motion in the System of Two Interacting Particles

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We report on the results of analytic and numerical investigations of spectral characteristics of the stochastic (thermal) motion of two charged particles in the anisotropic electric field of a trap. We propose analytic relations for the spectral density of displacements in such a system with homogeneous and inhomogeneous heat sources, including the spectral densities for each particle, as well as for their total and mutual displacements. The resulting relations have been verified by numerical simulation of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Photon Correlation and Light Beating Spectroscopy, Ed. by H. Z. Cummins and E. R. Pike (Plenum, New York, 1974).

    Google Scholar 

  2. J. Frenkel, Kinetic Theory of Liquids (Oxford Univ., London, 1946; Nauka, Leningrad, 1975).

  3. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley Interscience, Chichester, 1975).

    MATH  Google Scholar 

  4. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  5. O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasmas: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  6. Complex and Dusty Plasmas, Ed. by V. E. Fortov and G. E. Morfill (CRC, Boca Raton, FL, 2010).

    Google Scholar 

  7. A. V. Timofeev and B. N. Shvilkin, Sov. Phys. Usp. 19, 149 (1976).

    Article  ADS  Google Scholar 

  8. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, Radio-Frequency Capacitive Discharges (CRC, Boca Raton, FL, 1995).

    Google Scholar 

  9. O. S. Vaulina, Phys. Plasmas 24, 023705 (2017).

    Article  ADS  Google Scholar 

  10. O. S. Vaulina, J. Exp. Theor. Phys. 124, 839 (2017).

    Article  ADS  Google Scholar 

  11. O. S. Vaulina, Europhys. Lett. 115, 10007 (2016).

    Article  ADS  Google Scholar 

  12. O. S. Vaulina, S. A. Khrapak, O. F. Petrov, and A. P. Nefedov, Phys. Rev. E 60, 5959 (1999).

    Article  ADS  Google Scholar 

  13. R. A. Quinn and J. Goree, Phys. Rev. E 61, 3033 (2000).

    Article  ADS  Google Scholar 

  14. O. Vaulina, S. Khrapak, A. A. Samarian, and O. F. Petrov, Phys. Scr. T 84, 292 (2000).

    Google Scholar 

  15. O. S. Vaulina and K. G. Adamovich, J. Exp. Theor. Phys. 106, 955 (2008).

    Article  ADS  Google Scholar 

  16. O. S. Vaulina, K. G. Adamovich, O. F. Petrov, and V. E. Fortov, J. Exp. Theor. Phys. 107, 313 (2008).

    Article  ADS  Google Scholar 

  17. E. A. Lisin, R. A. Timirkhanov, O. S. Vaulina, O. F. Petrov, and V. E. Fortov, New J. Phys. 15, 053004 (2013).

    Article  ADS  Google Scholar 

  18. O. S. Vaulina and E. A. Lisin, Phys. Plasmas 16, 113702 (2009).

    Article  ADS  Google Scholar 

  19. V. E. Fortov, O. F. Petrov, O. S. Vaulina, and K. G. Koss, JETP Lett. 97, 322 (2013).

    Article  ADS  Google Scholar 

  20. G. A. Hebner, M. E. Riley, and K. E. Greenberg, Phys. Rev. E 66, 046407 (2002).

    Article  ADS  Google Scholar 

  21. O. S. Vaulina and I. E. Drangevski, Phys. Scr. 73, 577 (2006).

    Article  ADS  Google Scholar 

  22. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Nauka, Moscow, 1987).

  23. O. S. Vaulina and E. A. Sametov, J. Exp. Theor. Phys. 127, 350 (2018).

    Article  ADS  Google Scholar 

  24. Yu. L. Klimontovich, Statistical Physics (Nauka, Moscow, 1982; Harwood Academic, New York, 1986).

  25. A. A. Voronov, Theory of Automatic Control (Vyssh. Shkola, Moscow, 1986), Part 2 [in Russian].

  26. E. A. Lisin and O. S. Vaulina, J. Exp. Theor. Phys. 115, 947 (2012).

    Article  ADS  Google Scholar 

  27. E. A. Lisin, O. S. Vaulina, and O. F. Petrov, J. Exp. Theor. Phys. 124, 678 (2017).

    Article  ADS  Google Scholar 

  28. I. I. Lisina, E. A. Lisin, O. S. Vaulina, and O. F. Petrov, Phys. Rev. E 95, 013202 (2017).

    Article  ADS  Google Scholar 

  29. I. I. Lisina and O. S. Vaulina, Europhys. Lett. 103, 55002 (2013).

    Article  ADS  Google Scholar 

  30. O. S. Vaulina, K. G. Adamovich, and I. E. Dranzhevskii, Plasma Phys. Rep. 31, 562 (2005).

    Article  ADS  Google Scholar 

  31. A. Melzer, V. A. Schweigert, and A. Piel, Phys. Rev. Lett. 83, 3194 (1999).

    Article  ADS  Google Scholar 

  32. V. Steinberg, R. Sütterlin, A. V. Ivlev, and G. Morfill, Phys. Rev. Lett. 86, 4540 (2001).

    Article  ADS  Google Scholar 

  33. G. A. Hebner, M. E. Riley, and B. M. Marder, Phys. Rev. E 68, 016403 (2003).

    Article  ADS  Google Scholar 

  34. A. A. Samarian, S. V. Vladimirov, and B. W. James, Phys. Plasmas 12, 022103 (2005).

    Article  ADS  Google Scholar 

  35. M. Kroll, J. Schablinski, D. Block, and A. Piel, Phys. Plasmas 17, 013702 (2010).

    Article  ADS  Google Scholar 

  36. A. K. Mukhopadhyay and J. Goree, Phys. Rev. E 90, 013102 (2014).

    Article  ADS  Google Scholar 

  37. H. Jung, F. Greiner, O. H. Asnaz, J. Carstensen, and A. Piel, Phys. Plasmas 22, 053702 (2015).

    Article  ADS  Google Scholar 

  38. M. Chen, M. Dropmann, B. Zhang, L. S. Matthews, and T. W. Hyde, Phys. Rev. E 94, 033201 (2016).

    Article  ADS  Google Scholar 

  39. Z. Ding, K. Qiao, J. Kong, L. S. Matthews, and T. W. Hyde, Plasma Phys. Control. Fusion 61, 055004 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research (project no. 18-38-20175) and the Program of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Lisin or O. S. Vaulina.

Additional information

Translated by N. Wadhwa

Appendices

APPENDIX A

To find the correlators of velocities and displacements in the system defined by Eqs. (1), (2), we note that the correlators of random force Fb1(2) satisfy equations

$$\langle {{F}_{{b1}}}\rangle = \langle {{F}_{{b2}}}\rangle \equiv 0,\quad \langle {{F}_{{b1}}}{{F}_{{b2}}}\rangle = 0,$$
$$\langle {{F}_{{b1}}}{{V}_{2}}\rangle = \langle {{F}_{{b2}}}{{V}_{1}}\rangle \equiv 0,\quad \langle {{F}_{{b1}}}{{\xi }_{2}}\rangle = \langle {{F}_{{b2}}}{{\xi }_{1}}\rangle \equiv 0,$$
$$\langle {{F}_{{b1}}}{{\xi }_{1}}\rangle = \langle {{F}_{{b2}}}{{\xi }_{2}}\rangle \equiv 0,\quad \langle {{F}_{{b1}}}{{V}_{2}}\rangle = \langle {{F}_{{b2}}}{{V}_{1}}\rangle \equiv 0,$$

where V1(2) = dξ1(2)/dt are the velocities of particles per degree of freedom. (Here and below in Appendix A, angle brackets 〈 〉 indicate averaging over time for t → ∞.) Considering that 〈ξ1V1〉 = 〈ξ2V2〉 ≡ 0 and 〈V1(2)Fb1(2)〉 = ν\(T_{{1(2)}}^{0}\) for motion of particles in closed trajectories, where \(T_{{1(2)}}^{0}\) is the temperature of heat sources, we can write the equations for particle velocity and displacement correlators in form [9, 10]

$$ - \frac{{\nu \delta {{T}_{{1(2)}}}}}{M} + b\langle {{V}_{{1(2)}}}{{\xi }_{{2(1)}}}\rangle = 0,$$
(A.1)
$$ - a\langle {{({{\xi }_{{1(2)}}})}^{2}}\rangle + b\langle {{\xi }_{1}}{{\xi }_{2}}\rangle + \frac{{{{T}_{{1(2)}}}}}{M} = 0,$$
(A.2)
$$ - \nu \langle {{V}_{{1(2)}}}{{\xi }_{{2(1)}}}\rangle - a\langle {{\xi }_{1}}{{\xi }_{2}}\rangle + b\langle {{({{\xi }_{{2(1)}}})}^{2}}\rangle + \langle {{V}_{1}}{{V}_{2}}\rangle = 0,$$
(A.3)
$$ - 2\nu \langle {{V}_{1}}{{V}_{2}}\rangle - a\langle {{\xi }_{1}}{{V}_{2}}\rangle - a\langle {{\xi }_{2}}{{V}_{1}}\rangle = 0.$$
(A.4)

Here, δT1(2) = \(T_{{1(2)}}^{0}\)T1(2) and T1(2) = M\(V_{{1(2)}}^{2}\)〉 is the doubled kinetic energy of stochastic motion of particles.

Solving Eqs. (A.1)—(A.4), we obtain the energy valance equation in system (1a), (1b); this balance sets in at \(T_{1}^{0}\)\(T_{2}^{0}\) and leads to a redistribution of the stochastic kinetic energy between particles [9, 10]:

$$\delta {{T}_{{1(2)}}} - \frac{{{{b}^{2}}(T_{1}^{0} - T_{2}^{0})}}{{2{{b}^{2}} + {{\nu }^{2}}a}},$$
(A.5)

as well as to the following relations for the correlators of velocities and displacements of particles:

$$\langle {{V}_{1}}{{V}_{2}}\rangle = 0,$$
(A.6)
$$\langle \xi _{{1(2)}}^{2}\rangle = \frac{{(2{{a}^{2}} - {{b}^{2}}){{T}_{{1(2)}}} + {{b}^{2}}{{T}_{{2(1)}}}}}{{2a({{a}^{2}} - {{b}^{2}})M}},$$
(A.7)
$$\langle {{\xi }_{1}}{{\xi }_{2}}\rangle = \frac{{ab({{T}_{1}} + {{T}_{2}})}}{{2a({{a}^{2}} - {{b}^{2}})M}},$$
(A.8)
$$\langle {{\xi }_{2}}{{V}_{1}}\rangle \equiv - \langle {{\xi }_{1}}{{V}_{2}}\rangle = - \frac{{b({{T}_{1}} - {{T}_{2}})}}{{2\nu aM}}.$$
(A.9)

APPENDIX B

Any solution F(t) to problem (1), (2) can be written in the form of superposition

$$F(t) = {{C}_{0}} + \sum\limits_{i = 1}^4 {{{C}_{i}}\exp ({{\lambda }_{i}}t).} $$
(B.1)

In this case, quantity C0A1 = 2〈\(\xi _{{1(2)}}^{2}\)〉 for function 〈\(\Delta _{{1(2)}}^{2}\)(t)〉 (see formula (A.7) in Appendix A and [23]). To determine coefficients Ci (i = 1, 2, 3, 4), we can use the initial conditions of the problem: F(0) = 0, dF(0)/dt = 0, d2F(0)/dt2A2 = 2T1(2)/M, d3F(0)/dt3A3 = 2ν\(T_{{1(2)}}^{0}\)/M [4]. Then we can write the following system of equations for coefficients Ci:

$$\sum\limits_{i = 1}^4 {{{C}_{i}} = - {{A}_{1}},} $$
(B.2)
$$\sum\limits_{i = 1}^4 {{{\lambda }_{i}}{{C}_{i}} = 0,} $$
(B.3)
$$\sum\limits_{i = 1}^4 {\lambda _{i}^{2}{{C}_{i}} = {{A}_{2}},} $$
(B.4)
$$\sum\limits_{i = 1}^4 {\lambda _{i}^{3}{{C}_{i}} = - {{A}_{3}}.} $$
(B.5)

This gives

$${{C}_{1}} = - \frac{{{{A}_{3}} + {{A}_{2}}({{\lambda }_{2}} + {{\lambda }_{3}} + {{\lambda }_{4}}) - {{A}_{1}}{{\lambda }_{2}}{{\lambda }_{3}}{{\lambda }_{4}}}}{{({{\lambda }_{1}} - {{\lambda }_{2}})({{\lambda }_{1}} - {{\lambda }_{3}})({{\lambda }_{1}} - {{\lambda }_{4}})}},$$
(B.6)
$${{C}_{2}} = \frac{{{{A}_{3}} + {{A}_{2}}({{\lambda }_{1}} + {{\lambda }_{3}} + {{\lambda }_{4}}) - {{A}_{1}}{{\lambda }_{1}}{{\lambda }_{3}}{{\lambda }_{4}}}}{{({{\lambda }_{1}} - {{\lambda }_{2}})({{\lambda }_{2}} - {{\lambda }_{3}})({{\lambda }_{2}} - {{\lambda }_{4}})}},$$
(B.7)
$${{C}_{3}} = - \frac{{{{A}_{3}} + {{A}_{2}}({{\lambda }_{1}} + {{\lambda }_{2}} + {{\lambda }_{4}}) - {{A}_{1}}{{\lambda }_{1}}{{\lambda }_{2}}{{\lambda }_{4}}}}{{({{\lambda }_{1}} - {{\lambda }_{3}})({{\lambda }_{2}} - {{\lambda }_{3}})({{\lambda }_{3}} - {{\lambda }_{4}})}},$$
(B.8)
$${{C}_{4}} = \frac{{{{A}_{3}} + {{A}_{2}}({{\lambda }_{1}} + {{\lambda }_{2}} + {{\lambda }_{3}}) - {{A}_{1}}{{\lambda }_{1}}{{\lambda }_{2}}{{\lambda }_{3}}}}{{({{\lambda }_{1}} - {{\lambda }_{4}})({{\lambda }_{2}} - {{\lambda }_{4}})({{\lambda }_{3}} - {{\lambda }_{4}})}}.$$
(B.9)

With account for the roots of the characteristic equation, we can write system (B.6)–(B.9) as

$${{C}_{1}} = - \frac{{{{A}_{3}} - {{A}_{2}}\nu + {{\lambda }_{2}}({{A}_{2}} - {{A}_{1}}\omega _{2}^{2})}}{{2({{\lambda }_{1}} - {{\lambda }_{2}})b}},$$
(B.10)
$${{C}_{2}} = \frac{{{{A}_{3}} - {{A}_{2}}\nu + {{\lambda }_{1}}({{A}_{2}} - {{A}_{1}}\omega _{2}^{2})}}{{2({{\lambda }_{1}} - {{\lambda }_{2}})b}},$$
(B.11)
$${{C}_{3}} = \frac{{{{A}_{3}} - {{A}_{2}}\nu + {{\lambda }_{4}}({{A}_{2}} - {{A}_{1}}\omega _{1}^{2})}}{{2({{\lambda }_{3}} - {{\lambda }_{4}})b}},$$
(B.12)
$${{C}_{4}} = - \frac{{{{A}_{3}} - {{A}_{2}}\nu + {{\lambda }_{3}}({{A}_{2}} - {{A}_{1}}\omega _{1}^{2})}}{{2({{\lambda }_{3}} - {{\lambda }_{4}})b}}.$$
(B.13)

If the particles have the same temperature (\(T_{1}^{0}\) = \(T_{2}^{0}\)T), we have T1(2) = \(T_{{1(2)}}^{0}\). Consequently,

$${{C}_{1}} = - \frac{{2\nu T{{\lambda }_{2}}(1 - a{\text{/}}\omega _{1}^{2})}}{{M({{\lambda }_{1}} - {{\lambda }_{2}})b}},$$
(B.14)
$${{C}_{2}} = \frac{{2\nu T{{\lambda }_{1}}(1 - a{\text{/}}\omega _{1}^{2})}}{{M({{\lambda }_{1}} - {{\lambda }_{2}})b}},$$
(B.15)
$${{C}_{3}} = \frac{{2\nu T{{\lambda }_{4}}(1 - a{\text{/}}\omega _{2}^{2})}}{{M({{\lambda }_{3}} - {{\lambda }_{4}})b}},$$
(B.16)
$${{C}_{4}} = - \frac{{2\nu T{{\lambda }_{3}}(1 - a{\text{/}}\omega _{2}^{2})}}{{M({{\lambda }_{3}} - {{\lambda }_{4}})b}}.$$
(B.17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sametov, E.A., Lisin, E.A. & Vaulina, O.S. Spectral Characteristics of Stochastic Motion in the System of Two Interacting Particles. J. Exp. Theor. Phys. 130, 463–470 (2020). https://doi.org/10.1134/S1063776120020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020089

Navigation