Skip to main content
Log in

Experimental and Theoretical Research on the Angular Distribution of Neutrons Produced in 7Li(p, n)7Be Reactions during the Interaction of Intense Laser Pulses with Solid Targets

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Experiments to measure the angular distribution of neutrons produced in 7Li(p, n)7Be nuclear reactions have been carried out at the “Neodymium” picosecond laser facility. A beam of protons was generated on the rear side of a thin aluminum target irradiated by laser radiation with a maximum flux density of 3 × 1018 W cm–2 (λ = 1.055 μm). Traces of organic compounds on the target surface were the source of protons. Protons were incident on a massive LiF target in which the above nuclear reactions occurred. Our measurements have shown that the neutron flux is anisotropic with a degree of anisotropy equal to 2. We have analyzed the angular distribution of the neutron flux using numerical calculations. We show that at certain proton beam parameters characterizing the energy and angular spectra of protons, it is possible to reproduce the experimentally measured angular distribution of the neutron flux. There are proton beam parameters at which the degree of anisotropy of the neutron flux can be increased several-fold compared to the experimentally measured one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. Disdier, J.-P. Garconnet, G. Malka, and J.-L. Miquel, Phys. Rev. Lett. 82, 1454 (1999).

    Article  ADS  Google Scholar 

  2. L. Disdier, J.-P. Garconnet, and J.-L. Miquel, Inertial Fusion Sciences and Applications 99, Ed. by C. Labaune, W. J. Hogan, and K. A. Tanaka (Elsevier, Paris, 2000), p. 1026.

    Google Scholar 

  3. C. Toupin, E. Lefebvre, and G. Bonnaud, Phys. Plasmas 8, 1011 (2001).

    Article  ADS  Google Scholar 

  4. D. Hilscher, O. Berndt, M. Enke, U. Jahnke, P. V. Nickles, H. Ruhl, and W. Sandler, Phys. Rev. E 64, 016414 (2001).

    Article  ADS  Google Scholar 

  5. N. Izumi, Y. Sentoku, H. Habaraet, et al., Phys. Rev. E 65, 036413 (2002).

    Article  ADS  Google Scholar 

  6. H. Habara, R. Kodama, Y. Sentoku, et al., Phys. Plasmas 10, 3712 (2003).

    Article  ADS  Google Scholar 

  7. J. Davis and G. M. Petrov, Plasma Phys. Control. Fusion 50, 065016 (2008).

    Article  ADS  Google Scholar 

  8. L. Willingale, G. M. Petrov, A. Maksimchuk, et al., Phys. Plasmas 18, 083106 (2011).

    Article  ADS  Google Scholar 

  9. D. P. Higginson, J. M. McNaney, D. C. Swift, et al., Phys. Plasmas 18, 100703 (2011).

    Article  ADS  Google Scholar 

  10. J. Krasa, D. Klir, A. Velyhan, et al., High Power Laser Sci. Eng. 2, e19 (2014).

    Article  Google Scholar 

  11. www.clf.stfc.ac.uk.

  12. A. Alejo, H. Ahmed, A. Green, et al., Nuovo Cim. C 38 (6), 1 (2016).

    Google Scholar 

  13. A. Alejo, A. Green, H. Ahmed, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 829, 176 (2016).

    Google Scholar 

  14. S. Kar, A. Green, H. Ahmed, et al., New J. Phys. 18, 053002 (2016).

    Article  ADS  Google Scholar 

  15. N. N. Demchenko, S. Yu. Gus’kov, V. B. Rozanov, A. I. Gromov, V. S. Belyaev, D. V. Kovkov, A. V. Lobanov, A. Yu. Kedrov, A. P. Matafonov, and V. P. Krainov, J. Exp. Theor. Phys. 128, 178 (2019).

    Article  ADS  Google Scholar 

  16. K. L. Lancaster, S. Karch, and H. Habaraetal, Phys. Plasmas 11, 3404 (2004).

    Article  ADS  Google Scholar 

  17. A. Youssef, R. Kodama, and M. Tampo, Phys. Plasmas 13, 030702 (2006).

    Article  ADS  Google Scholar 

  18. A. Youssef, R. Kodama, and M. Tampo, Phys. Plasmas 13, 030701 (2006).

    Article  ADS  Google Scholar 

  19. G. M. Petrov, D. P. Higginson, J. Davis, et al., Phys. Plasmas 19, 093106 (2012).

    Article  ADS  Google Scholar 

  20. C. M. Brenner, S. R. Mirfayzi, D. R. Rusby, et al., Plasma Phys. Control. Fusion 58, 014039 (2016).

    Article  ADS  Google Scholar 

  21. D. A. Vikhlyaev, D. S. Gavrilov, S. A. Gorokhov, et al., in Proceedings of the 40th International Zvenigorod Conference on Physics of Plasma and Controlled Thermonuclear Synthesis, Zvenigorod, 2013, p. 106.

  22. Y. Xu, G. Randers-Pehrson, S. A. Marino, et al., Radiat. Protect. Dosim. 145, 373 (2011).

    Article  Google Scholar 

  23. M. Lebois, J. N. Wilson, P. Halipre, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 735, 145 (2014).

    Google Scholar 

  24. V. P. Krainov, Phys. At. Nucl. 74, 1410 (2011).

    Article  Google Scholar 

  25. V. S. Belyaev, V. I. Vinogradov, A. P. Matafonov, V. P. Krainov, V. S. Lisitsa, V. P. Andrianov, G. N. Ignatyev, Yu. A. Merkul’ev, V. S. Bushuev, and A. I. Gromov, Phys. At. Nucl. 71, 443 (2008).

    Article  Google Scholar 

  26. V. S. Belyaev, V. I. Vinogradov, A. P. Matafonov, S. M. Rybakov, V. P. Krainov, V. S. Lisitsa, V. P. Andrianov, G. N. Ignatiev, V. S. Bushuev, A. I. Gromov, A. S. Rusetsky, and V. A. Dravin, Phys. At. Nucl. 72, 1077 (2009).

    Article  Google Scholar 

  27. G. L. Squires, Practical Physics, 4th ed. (Cambridge Univ. Press, Cambridge, 2008).

    Google Scholar 

  28. N. N. Demchenko, V. B. Rozanov, V. S. Belyaev, et al., J. Russ. Laser Res. 36, 300 (2015).

    Article  Google Scholar 

  29. H. Liskien and A. Paulsen, At. Data Nucl. Data Tabl. 15, 57 (1975).

    Article  ADS  Google Scholar 

  30. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  31. N. Izumi, Y. Sentoku, H. Habara, et al., Phys. Rev. E 65, 036413 (2002).

    Article  ADS  Google Scholar 

  32. V. S. Belyaev, A. P. Matafonov, S. M. Ribakov, V. P. Danilov, V. P. Krainov, V. S. Lisitsa, V. P. Andrianov, G. N. Ignatyev, and A. S. Rusitski, Phys. At. Nucl. 73, 1820 (2010).

    Article  Google Scholar 

  33. A. Pukhov, Z. M. Sheng, and J. Meer-ter-Vehen, Phys. Plasmas 6, 2847 (1999).

    Article  ADS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project nos. 17-02-00021, 18-29-21021, and 19-02-00299) and the Ministry of Education and Science of the Russian Federation (project no. 3.873.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Demchenko.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchenko, N.N., Belyaev, V.S., Matafonov, A.P. et al. Experimental and Theoretical Research on the Angular Distribution of Neutrons Produced in 7Li(p, n)7Be Reactions during the Interaction of Intense Laser Pulses with Solid Targets. J. Exp. Theor. Phys. 129, 357–367 (2019). https://doi.org/10.1134/S1063776119090024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119090024

Navigation