Skip to main content
Log in

Influence of the Asynchronous Multibeam Irradiation of a Spherical Fusion Target by Megajoule Laser Beams on the Efficiency of Thermonuclear Burning

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the dependence of the compression and burning of a spherical direct-drive fusion target on the nonuniformity of its heating caused by the asynchronous arrival of laser beams under conditions of irradiation by a modern laser system with a total energy of 2 MJ intended for the fuel ignition and fusion energy evolution equal to the absorbed laser energy. The investigation is performed by numerical simulation based on 2D hydrodynamic codes. It is established that the limiting permissible spread of the moments of laser pulse action on the target for ignition significantly exceeds the level that can be ensured using modern methods of controlled temporal synchronization of laser beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Mosesand and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005).

    Article  Google Scholar 

  2. M. J. Edwards, P. K. Patel, J. D. Lindl, et al., Phys. Plasmas 20, 070501 (2013).

    Article  ADS  Google Scholar 

  3. O. A. Hurricane, D. A. Callahan, D. T. Casey, et al., Nature (London, U.K.) 506, 343 (2014).

    Article  ADS  Google Scholar 

  4. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, P. A. Kuchugov, N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 121, 686 (2015).

    Article  ADS  Google Scholar 

  5. D. Besnard, Europhys. J. D 44, 207 (2006).

    ADS  Google Scholar 

  6. R. L. McCrory, R. Betti, T. R. Boehly et al., Nucl. Fusion 53, 113021 (2013).

    Article  ADS  Google Scholar 

  7. B. Canaud, X. Fortin, N. Dague, and J. L. Bocher, Phys. Plasmas 9, 4252 (2002).

    Article  ADS  Google Scholar 

  8. N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res. 13, 396 (1992).

    Article  Google Scholar 

  9. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, M. E. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  10. V. A. Shcherbakov, Sov. J. Plasma Phys. 9, 240 (1983).

    Google Scholar 

  11. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).

    Article  ADS  Google Scholar 

  12. M. Temporal and B. Canaud, Europhys. J. D 55, 139 (2009).

    ADS  Google Scholar 

  13. S. Yu. Gus’kov, N. N. Demchenko, N. V. Zmitrenko, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov and R. A. Yakhin, JETP Lett. 105, 402 (2017).

    Article  ADS  Google Scholar 

  14. C. Tian, L. Shan, W. Zhou, et al., Phys. Plasmas 22, 082707 (2015).

    Article  ADS  Google Scholar 

  15. T. Yanagawa, H. Sakagami, A. Sunahara, and H. Nagatomo, Laser Part. Beams 33, 367 (2015).

    Article  ADS  Google Scholar 

  16. M. Temporall, B. Canaud, W. J. Garbett, et al., High Power Laser Sci. Eng. 2, e8 (2014).

    Google Scholar 

  17. I. V. Igumenshchev, V. N. Goncharov, F. J. Marshall, et al., Phys. Plasmas 23, 052702 (2016).

    Article  ADS  Google Scholar 

  18. N. N. Demchenko, I. Ya. Doskoch, S. Yu. Gus’kov, et al., Laser Part. Beams 33, 65 (2015).

    Article  Google Scholar 

  19. S. A. Bel’kov, S. V. Bondarenko, G. A. Vergunova, S. G. Garanin, S. Yu. Gus’kov, N. N. Demchenko, I. Ya. Doskoch, N. V. Zmitrenko, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, and R. A. Yakhin, J. Exp. Theor. Phys. 124, 341 (2017).

    Article  ADS  Google Scholar 

  20. S. G. Garanin, Phys. Usp. 54, 415 (2011).

    Article  ADS  Google Scholar 

  21. H. Takabe, K. Mima, L. Montierth, and L. Morse, Phys. Fluids 28, 3676 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  22. V. B. Rozanov and N. N. Demchenko, Sov. J. Quantum Electron. 15, 1251 (1985).

    Article  ADS  Google Scholar 

  23. N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, et al., Vopr. At. Nauki Tekh., Ser.: Metod. Programmy Chisl. Reshen. Zadach Mat. Fiz., No. 2, 34 (1983).

    Google Scholar 

  24. V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorskii, Mat. Model. 7 (5), 15 (1995).

    Google Scholar 

  25. M. J. Rosenberg, A. A. Solodov, J. F. Myatt, et al., Phys. Rev. Lett. 120, 055001 (2018).

    Article  ADS  Google Scholar 

  26. V. N. Goncharov, T. C. Sangster, R. Betti, et al., Phys. Plasmas 21, 056315 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Yakhin.

Additional information

Original Russian Text © S.A. Bel’kov, S.V. Bondarenko, G.A. Vergunova, S.G. Garanin, S.Yu. Gus’kov, N.N. Demchenko, I.Ya. Doskoch, P.A. Kuchugov, N.V. Zmitrenko, V.B. Rozanov, R.V. Stepanov, R.A. Yakhin, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 154, No. 3, pp. 629–640.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel’kov, S.A., Bondarenko, S.V., Vergunova, G.A. et al. Influence of the Asynchronous Multibeam Irradiation of a Spherical Fusion Target by Megajoule Laser Beams on the Efficiency of Thermonuclear Burning. J. Exp. Theor. Phys. 127, 539–548 (2018). https://doi.org/10.1134/S1063776118080137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118080137

Navigation