Skip to main content
Log in

Thermodynamic parameters of helium under shock-wave and quasi-isentropic compressions at pressures up to 4800 GPa and compression ratios up to 900

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The thermodynamic parameters of a strongly nonideal helium plasma obtained in experimental devices of hemispherical and spherical geometries are presented. Under shock-wave loading in the hemispherical device, the helium plasma was compressed to a density ρ ≈ 0.76 g cm–3 by a pressure P ≈ 83 GPa at a temperature T ≈ 51000 K. Two-cascade spherical experimental devices of two types were used under quasi-isentropic helium plasma compression. In the devices of the first type at the same initial gas pressure in both cavities of the shells, the helium plasma was compressed approximately by a factor of 200 to a density ρ ≈ 8 g cm–3 by a pressure P ≈ 4800 GPa. In the devices of the second type at a ratio of the initial gas pressures in the cavities of about 9: 1, the thermodynamic parameters of a nonideal helium plasma compressed by a factor of 900 to a density ρ ≈ 5 g cm–3 by a pressure P ≈ 3700 GPa were determined. The compressed-plasma pressure was determined from the results of gasdynamic computations. An X-ray radiograph consisting of three betatrons and a multichannel optoelectronic X-ray imaging system was used to determine the positions of the boundaries of the gaseous-helium-compressing steel shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Fortov, R. I. Il’kaev, V. A. Arinin, V. V. Burtzev, V. A. Golubev, I. L. Iosilevskiy, V. V. Khrustalev, A. L. Mikhailov, M. A. Mochalov, V. Ya. Ternovoi, and M. V. Zhernokletov, Phys. Rev. Lett. 99, 185001 (2007).

    Article  ADS  Google Scholar 

  2. V. E. Fortov, Extreme States of Matter. High Energy Density Physics (Fizmatlit, Moscow, 2013; Springer International, Switzerland, 2016).

    MATH  Google Scholar 

  3. V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos (Springer, Berlin, Heidelberg, 2011).

    Book  MATH  Google Scholar 

  4. V. E. Fortov and I. T. Iakubov, The Physics of Non-Ideal Plasma (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  5. V. E. Fortov, Thermodynamics and Equations of State for Matter:From Ideal Gas to Quark-Gluon Plasma (Fizmatlit, Moscow, 2012; World Scientific, Singapore, 2016).

    Book  MATH  Google Scholar 

  6. V. E. Fortov, V. Ya. Ternovoi, M. V. Zhernokletov, M. A. Mochalov, A. L. Mikhailov, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, V. K. Gryaznov, and I. L. Iosilevski, J. Exp. Theor. Phys. 97, 259 (2003).

    Article  ADS  Google Scholar 

  7. S. K. Grishechkin, S. K. Gruzdev, V. K. Gryaznov, M. V. Zhernokletov, R. I. Il’kaev, I. L. Iosilevskiy, G. N. Kashintseva, S. I. Kirshanov, S. F. Manachkin, V. B. Mintsev, A. L. Mikhailov, A. B. Mezhevov, M. A. Mochalov, V. E. Fortov, V. V. Khrustalev, A. N. Shuikin, and A. A. Yukhimchuk, JETP Lett. 80, 398 (2004).

    Article  ADS  Google Scholar 

  8. W. J. Nellis, N. C. Holmes, A. C. Mitchell, R. J. Trainor, G. K. Governo, M. Ross, and D. A. Young, Phys. Rev. Lett. 53, 1248 (1984).

    Article  ADS  Google Scholar 

  9. J. Eggert, S. Brygoo, P. Loubeyre, R. S. McWilliams, P.M. Celliers, D. G. Hicks, T. R. Boehly, R. Jeanloz, and G. W. Collins, Phys. Rev. Lett. 100, 124503 (2008)

    Article  ADS  Google Scholar 

  10. J. Eggert, P. Loubeyre, S. Brygoo, et al., in Proceedings of the Joint 20th AIRAPT-43th EHPRG Conference on Science and Technology of High Pressure, June 27–Jule 1, Karlsruhe, Germany, 2005, p.133.

  11. D. G. Hicks, T. R. Rochly, P. M. Celliers, J. H. Eggert, S. J. Moon, D. D. Meyerhofer, and G. W. Collins, Phys. Rev. B 79, 014112 (2009).

    Article  ADS  Google Scholar 

  12. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, JETP Lett. 16, 201 (1972).

    ADS  Google Scholar 

  13. F. V. Grigor’ev, S. B. Kormer, O. L. Mikhailova, A. P. Tolochko, and V. D. Urlin, Sov. Phys. JETP 48, 847 (1978).

    ADS  Google Scholar 

  14. S. T. Weir, A. C. Mitchell, and W. J. Nellis, Phys. Rev. Lett. 76, 1860 (1996)

    Article  ADS  Google Scholar 

  15. W. J. Nellis, S. T. Weir, and A. C. Mitchell, Phys. Rev. B 59, 3434 (1999).

    Article  ADS  Google Scholar 

  16. W. J. Nellis, Rep. Progr. Phys. 69, 1195 (2006).

    Article  ADS  Google Scholar 

  17. L. B. da Silva, P. Celliers, G. W. Collins, K. S. Budil, N. C. Holmes, T. W. Barbee, Jr., B. A. Hammel, J. D. Kilkenny, R. J. Wallace, M. Ross, R. Cauble, A. Ng, and G. Chiu, Phys. Rev. Lett. 78, 483 (1997).

    Article  ADS  Google Scholar 

  18. G. W. Collins, L. B. da Silva, R. Celliers, D. M. Gold, M. E. Foord, R. J. Wallace, A. Ng, S. V. Weber, K. S. Budil, and R. Cauble, Science 281, 1178 (1998).

    Article  ADS  Google Scholar 

  19. M. D. Knudson and D. L. Hanson, Phys. Rev. Lett. 90, 035505 (2003).

    Article  ADS  Google Scholar 

  20. M. D. Knudson, D. L. Hanson, J. E. Bailey, C. A. Hall, J. R. Asay, and A. Deeney, Phys. Rev. B 69, 144209 (2004).

    Article  ADS  Google Scholar 

  21. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, Yu. M. Makarov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, E. A. Pronin, and A. A. Yukhimchuk, J. Exp. Theor. Phys. 115, 614 (2012).

    Article  ADS  Google Scholar 

  22. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, V. A. Komrakov, V. A. Ogorodnikov, A. V. Ryzhkov, and A. A. Yukhimchuk, JETP Lett. 96, 158 (2012).

    Article  ADS  Google Scholar 

  23. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Raevskii, V. A. Ogorodnikov, A. A. Yukhimchuk, A. I. Davydov, N. N. Anashkin, V. A. Arinin, A. O. Blikov, A. Yu. Baurin, N. B. Davydov, V. A. Komrakov, A. I. Logvinov, et al., J. Exp. Theor. Phys. 119, 146 (2014).

    Article  ADS  Google Scholar 

  24. M. A. Mochalov, R. I. Il’kaev, V. E. Fortov, A. L. Mikhailov, V. A. Arinin, A. O. Blikov, V. A. Komrakov, A. V. Ryzhkov, V. A. Ogorodnikov, and A. A. Yukhimchuk, JETP Lett. 101, 519 (2015).

    Article  ADS  Google Scholar 

  25. D. Saumon, G. Chabrier, and H. M. van Horn, Astrophys. J. 99, 713 (1995).

    Article  ADS  Google Scholar 

  26. M. Ross, F. Rogers, N. Winter, et al., Phys. Rev. B 76, 020502 (2007).

    Article  ADS  Google Scholar 

  27. B. Militzer, Phys. Rev. Lett. 97, 175501 (2006).

    Article  ADS  Google Scholar 

  28. W. Ebeling, Contrib. Plasma Phys. 30, 553 (1990).

    Article  ADS  Google Scholar 

  29. H. Hess, High Press. Res. 1, 203 (1989).

    Article  ADS  Google Scholar 

  30. V. T. Shvets, J. Exp. Theor. Phys. 116, 159 (2013).

    Article  ADS  Google Scholar 

  31. C. A. Seldam, Proc. Phys. Soc. A 70, 97 (1957).

    Article  ADS  Google Scholar 

  32. V. P. Trubitsyn and F. R. Ulinich, Sov. Phys. Dokl. 7, 45 (1962).

    ADS  Google Scholar 

  33. D. A. Young, A. K. McMahan, and M. Ross, Phys. Rev. B 24, 5119 (1981).

    Article  ADS  Google Scholar 

  34. J. Meyer-ter-Vehn and W. Zittel, Phys. Rev. B 37, 8674 (1988).

    Article  ADS  Google Scholar 

  35. A. Förster, T. Kahlbaum, and W. Ebeling, High Press. Res. 7, 375 (1991).

    Article  ADS  Google Scholar 

  36. A. Förster, T. Kahlbaum, and W. Ebeling, Laser Part. Beams 10, 253 (1992).

    Article  ADS  Google Scholar 

  37. M. A. Mochalov, S. K. Grishechkin, S. K. Gruzdev, and G. N. Kashintseva, RF Patent No. 129249U1, Byull. No. 17 (2013).

  38. V. V. Sychev, A. A. Vasserman, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamical Properties of Helium (GSSSD, Izd-vo Standartov, Moscow, 1984) [in Russian].

    Google Scholar 

  39. L. F. Gudarenko, D. G. Gordeev, and V. G. Kudel’kin, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., Nos. 1–2, 51 (2005).

    Google Scholar 

  40. B. L. Glushak, L. F. Gudarenko, Yu. M. Styazhkin, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsess., No. 2, 57 (1991).

    Google Scholar 

  41. SESAME, The Los Alamos National Laboratory Equation of State, Database, Ed. by S. P. Lyon and J. D. Johnson, Group T-1, LA-UR-92-3407 (Los Alamos Laboratory, 1995).

  42. Yu. P. Kuropatkin, V. D. Mironenko, V. N. Suvorov, D. I. Zenkov, and B. F. Tkachenko, in Proceedings of the 11th IEEE Pulsed Power Conference, Ed. by G. Cooperstein and I. Vitkovitsky (1997), p. 1669.

  43. V. A. Arinin, B. I. Tkachenko, L. A. Fadeev, V. D. Orlov, V. V. Burtsev, and Yu. M. Makarov, in Proceedings of the 11th Kharitonov Thematic Scientific Readings, Ed. by A. L. Mikhailov (RFYaTs-VNIIEF, Sarov, 2009), p. 714

  44. V. A. Arinin, Tsifrov. Obrab. Signalov 8 (2), 52 (2006)

    Google Scholar 

  45. V. A. Arinin and B. I. Tkachenko, Pattern Recognit. Image Anal. 19, 63 (2010).

    Article  Google Scholar 

  46. N. F. Gavrilov, G. G. Ivanova, V. I. Selin, and V. N. Sofronov, Vopr. At. Nauki Tekh., Ser.: Metodiki Progr. Chisl. Reshen. Zadach Mat. Fiz., No. 3, 11 (1982).

    Google Scholar 

  47. V. P. Kopyshev, Prikl. Mat. Teor. Fiz. 12, 103 (1971).

    Google Scholar 

  48. V. P. Kopyshev and V. V. Khrustalev, Prikl. Mat. Teor. Fiz. 21, 122 (1980).

    Google Scholar 

  49. W. G. Hoover, S. G. Gray, and K. W. Johnson, J. Chem. Phys. 55, 1128 (1971).

    Article  ADS  Google Scholar 

  50. I. R. Trunin, S. V. Koritskaya, and V. Arnold, Preprint No. 75-2000 (Sarov, 2000).

  51. O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Rev. Sci. Instrum. 77, 083108 (2006).

    Article  ADS  Google Scholar 

  52. M. V. Zhernokletov, V. K. Gryaznov, V. A. Arinin, V. N. Buzin, N. B. Davydov, R. I. Il’kaev, I. L. Iosilevskiy, A. L. Mikhailov, M. G. Novikov, V. V. Khrustalev, and V. E. Fortov, JETP Lett. 96, 432 (2012).

    Article  ADS  Google Scholar 

  53. V. Ya. Ternovoi, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, and V. E. Fortov, in Shock Compression of Condensed Matter-2001, Proceedings of the Conference, 2001, Ed. by M. D. Furnish, N. N. Thadhani, and Y. Horie (AIP Press, New York, 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mochalov.

Additional information

Original Russian Text © M.A. Mochalov, R.I. Il’kaev, V.E. Fortov, A.L. Mikhailov, V.A. Arinin, A.O. Blikov, S.E. Elfimov, V.A. Komrakov, V.A. Ogorodnikov, A.V. Ryzhkov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 5, pp. 1113–1130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mochalov, M.A., Il’kaev, R.I., Fortov, V.E. et al. Thermodynamic parameters of helium under shock-wave and quasi-isentropic compressions at pressures up to 4800 GPa and compression ratios up to 900. J. Exp. Theor. Phys. 125, 948–963 (2017). https://doi.org/10.1134/S1063776117100120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117100120

Navigation